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Abstract

Distant supervision (DS) is a method for training
sentence-level information extraction models using
only an unlabeled corpus and a knowledge base (KB).
Fundamental to many DS approaches is the assump-
tion that KB facts are expressed at least once (EALO)
in the text corpus. Often, however, KB facts are actu-
ally expressed in the corpus many times, in which cases
EALO-based systems underuse the available training
data. To address this problem, we introduce the “ex-
pressed at least α percent” (EALA) assumption, which
asserts that expressions of KB facts account for up to
α% of the corresponding mentions. We show that for
the same level of precision as the EALO approach, the
EALA approach achieves up to 66% higher recall on
category recognition and 53% higher recall on relation
recognition.

1 Introduction
Distant supervision (DS) (Craven and Kumlien 1999; Mor-
gan et al. 2004; Bunescu and Mooney 2007; Mintz et al.
2009; Riedel, Yao, and McCallum 2010; Hoffmann et al.
2011; Surdeanu et al. 2012; Ritter et al. 2013) has recently
emerged as a popular way to scale up Information Extrac-
tion (IE) systems beyond the handfuls of semantic predicates
for which expensive, manually-annotated training data exist.
This trend is highly significant because in order to enable
widespread adoption for truly intelligent, text-based appli-
cations, such as semantic search, question answering (QA),
and deep, knowledge-based natural language understanding
(NLU), IE systems must be successfully scaled to tens of
thousands of semantic predicates, both unary (categories)
and binary (relations).

The key idea behind distant supervision is that training
examples for sentence-level extraction models can be au-
tomatically distilled from an unlabeled text corpus through
the use of a repository of out-of-context facts, called a
knowledge base (KB). For example, suppose the goal is
to learn a model for recognizing instances of the PRESI-
DENTOF relation and that a KB contains the fact PRES-
IDENTOF(BARACKOBAMA,UNITEDSTATES). The goal of
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Figure 1: Sentences mentioning BARACKOBAMA and
UNITEDSTATES. The EALO assumption only asserts
that at least one of these expresses the fact PRESI-
DENTOF(BARACKOBAMA,UNITEDSTATES), when in real-
ity 3 out of these 5 sentences actually do.

distant supervision, then, is to somehow use this fact to auto-
matically identify which sentences in an unlabeled text cor-
pus can provide useful signals to the learning process.

The first step is consider the set of sen-
tences from the corpus that mention the instance1

〈BARACKOBAMA,UNITEDSTATES〉. Suppose that the
sentences shown in Figure 1 comprise that set. Precisely
how this set of sentences is used to learn model parameters
is what differentiates various DS algorithms.

Early DS approaches (Bunescu and Mooney 2007; Mintz
et al. 2009) were based on the distant supervision assump-
tion (Riedel, Yao, and McCallum 2010):

All mentions of an instance in the training corpus ex-
press the corresponding KB fact(s).

Such systems would simply treat all the sentences in Fig-
ure 1 as labeled examples of PRESIDENTOF mentions. How-
ever, the last mention in Figure 1 certainly does not express
or directly imply the PRESIDENTOF relation. To address the

1In this paper, we use the following general terminology to em-
phasize that the approaches we discuss apply equally well to both
categories and relations. A predicate is either a category or a re-
lation. A predicate instance, or just instance, is either an entity (a
category instance) or a pair of entities (a relation instance). A men-
tion is a reference to an instance in a particular sentence.



inevitable noise caused by using this assumption, Riedel et
al. (2010) introduced the “expressed at least once” (EALO)
assumption:

Each KB fact associated with an instance is expressed
by at least one mention in the training corpus.

Approaches based on this principle (Riedel, Yao, and Mc-
Callum 2010; Hoffmann et al. 2011) would intelligently se-
lect only a single mention from Figure 1 to treat as a la-
beled PRESIDENTOF mention. As this hypothetical example
illustrates, however, there may be many more mentions that
could provide useful signals to the learning process. Thus,
although the EALO assumption addresses precision errors
introduced by the more liberal distant supervision assump-
tion, it leads to underutilization of the available training data
and subsequent recall errors. This is especially true with cat-
egory recognition (which was not addressed by the research
cited in this paragraph) because category instances typically
have many corpus mentions.

To address this problem, we make the following contribu-
tions:

• We propose a new assumption, called the “expressed at
least α percent” (EALA) assumption, which constrains
the system to use more than one mention when updating
parameters.

• We present a model and algorithm for implementing this
new assumption.

• We empirically evaluate whether the EALA assumption
improves performance over the EALO assumption on
both the category and relation recognition tasks. In Sec-
tion 4, we show that for the same level of precision as
the EALO approach, the EALA approach achieves signif-
icantly higher recall on both category and relation recog-
nition.

• We also demonstrate that our distant supervision algo-
rithm can be successfully scaled up using a distributed
implementation to train on millions of training examples.

2 Related Work
Traditional approaches to information extraction (Grishman
and Sundheim 1996; Doddington, Mitchell, and Przybocki
2004) rely on manually annotated corpora to train ma-
chine learning models or develop linguistic rules. While this
approach has been quite successful, reliance on manually
constructed data limits their applicability across domains.
Therefore, researchers have looked at many different ways
to induce predicate mention recognizers without manually
labeled training data.

Distant supervision, also called weak or minimal supervi-
sion, was introduced by Craven and Kumlien (1999). Most
of the previous work on distant supervision has addressed
learning to recognize either relations (Craven and Kum-
lien 1999; Bunescu and Mooney 2007; Mintz et al. 2009;
Riedel, Yao, and McCallum 2010; Hoffmann et al. 2011;
Surdeanu et al. 2012; Min et al. 2013) or categories (Morgan
et al. 2004; Whitelaw et al. 2008; Huang and Riloff 2010),

and only very recently, both (Ritter et al. 2013). In this pa-
per, we simultaneously address both categories and relations
with the same distant supervision framework.

The task of recognizing, or extracting, semantic predi-
cate instances at the corpus level has also received much
attention. Hearst (1992) pioneered a solution for this task
using textual patterns to learn instances of semantic cate-
gories. Brin (1998) described one of the first systems for au-
tomatically learning instances of a binary relation. Etzioni
et al. (2005) leveraged Hearst’s patterns in a bootstrapping
fashion to learn category facts from the Web. Carlson et al.
(2010) use coupling constraints between predicates to re-
duce semantic drift. Nakashole et al. (2011) describe recent
work in large-scale fact extraction. Riedel et al. (2013) have
recently introduced a matrix factorization approach which
achieves state-of-the art performance on the aggregate-level
relation extraction task.

Open IE (Banko et al. 2007) is another related task in
which a system extracts instances of relations that are not
predefined. Rather than relying on a schema or ontology to
define the relations to be extracted, OpenIE methods use lin-
guistic patterns to extract strings describing the relation di-
rectly from the text. This approach is flexible and covers a
broad range of relations, but doesn’t resolve relation men-
tions to a common representation, often resulting in multiple
representations expressing essentially the same meaning.

Finally, a number of researchers (Bunescu and Mooney
2007; Riedel, Yao, and McCallum 2010; Hoffmann et al.
2011; Surdeanu et al. 2012; Min et al. 2013) have recognized
that distant supervision is a form of multiple-instance learn-
ing (MIL) (Dietterich, Lathrop, and Lozano-Perez 1997). In
this work we extend the notion of positive bags in MIL to
be those which contain at least α% positive instances as op-
posed to at least one positive instance, showing significant
improvement in recall for both relation and category recog-
nition.

This work is most closely related to that of Hoffmann et
al. (2011), who introduced the MultiR algorithm, which is
based on the EALO assumption, because we use the same
general latent-variable approach in implementing our model.

3 Expressed At Least α Percent
In this work, we introduce the following generalization of
the EALO assumption:

The KB facts corresponding to an instance are ex-
pressed2 by at least α% of the training corpus mentions
of that instance.

We refer to this assumption as the “expressed at least α per-
cent” (EALA) assumption and show in Section 4 that it leads
to improved performance over the EALO assumption.

3.1 Latent Variable Model
The task addressed by this work is, given a set of pre-
specified predicates P , to predict the most appropriate pred-
icate label for each mention of each instance in an input cor-
pus of text. As in the MultiR framework, each instance is

2in equal proportion, to be consistent with the EALO assump-
tion



inherently associated with all of its mentions from the in-
put corpus, and the labels on the mentions of a particular
instance are assumed to be (collectively) independent of any
other mention labels. Therefore, we present the model in the
context of a single instance i with its corresponding set of
mentions and mention labels.

Let M be the number of mentions of i in the corpus. Each
mention is represented by an observed vector Xj of binary
features, with X = {Xj} containing the feature vectors for
all the mentions of i. The primary output of the system is
the latent predicate label Zj ∈ P for each mention Xj ,
with Z = {Zj} containing the labels for all the mentions
of i. Crucially, the model also includes a set Y = {Yp} of
aggregate-level binary labels, one for each of the L = |P|
predicates inP . Each variable Yp represents whether the cor-
pus supports the notion that a particular predicate p is “true”
for instance i, i.e., that a sufficient number of i’s mentions
have been labeled as p (this will be made more concrete be-
low). Y is unobserved during prediction, but observed dur-
ing training, as we will further explain below.

Our approach is based on the following conditional dis-
tribution (the normalization constant Zθ(x) is omitted for
brevity):

Pθ(y, z|x) ∝ ΦEALAα (y, z)
∏
j

Φftθ (xj , zj)

The workhorse of the model is Φftθ , a parameterized, log-
linear factor between the features and the label of a particular
mention:

Φftθ (xj , zj) = exp

{∑
k

θkφk(xj , zj)

}

where each k corresponds to a particular feature/label com-
bination {f, l}, and φk is a indicator function returning 1
only if f is active in xj and zj = l, and 0 otherwise. The
weight vector θ = {θk} constitutes the parameters of the
model, which the system learns during training.

The heart of the model is ΦEALA, which explicitly en-
codes the EALA assumption and therefore is fundamental
to the entire approach. Although this factor is not parameter-
ized, it constrains Pθ(y, z|x) by assigning zero probability
to configurations of y and z that violate the EALA assump-
tion:

ΦEALAα (y, z) =

{
1 if ∀p : yp = 1, nz,p ≥ αM/ny,1

0 otherwise

where nz,p = |z(p)| is the number of mention labels in z
whose value is p and ny,1 = |y(1)| is the number of aggre-
gate labels in y whose value is 1. Figure 2(a) shows a graph-
ical representation of the model. We also show a represen-
tation of the MultiR approach in Figure 2(b) (using our no-
tation) to highlight the similarities and differences between
the two models.

Assuming the set of parameters θ has already been
learned, the prediction task is to find the most probable men-

Figure 2: Graphical models for (a) this work and (b) MultiR
(Hoffmann et al. 2011)

tion labels ẑ:

ẑ = arg max
z

Pθ(y, z|x)

= arg max
z

∏
j

Φftθ (xj , zj)

where the last simplification is possible because y is essen-
tially a deterministic function of z and can therefore be ig-
nored when computing ẑ.

3.2 Training
To learn the model parameters θ, our system maximizes the
conditional probability of aggregate labels y∗ derived from
a knowledge base, given the observed mention features x, or
equivalently, the log of that probability, subject to L1 and L2

regularization3:

O(θ) =
∑
i

Oi(θ)− λ

2
‖θ‖22 − τ‖θ‖1

Oi(θ) = lnPθ(y∗|x)

= ln
∑
z

Pθ(y∗, z|x)

This objective is maximized using stochastic gradient as-
cent, where the primary terms of the gradient are:

∂

∂θk
lnOi(θ) = EPθ(z|y,x)[

∑
j

φk(xj , zj)]

− EPθ(y,z|x)[
∑
j

φk(xj , zj)]

However, because it is not feasible to compute these ex-
pectations exactly, we follow the MultiR approach and re-
place the expectations with maximizations. This requires
computing the following two settings of mention labels:

z∗ = arg max
z

Pθ(z|x,y)

ẑ = arg max
z

Pθ(y, z|x)

3For efficiency, instead of regularizing paramters after each ex-
ample, we do so only once every 100 examples, in the prox-grad
style (Martins et al. 2011).



Algorithm 1 : Computing z∗

Input: R: number of “rounds”, pkb: active KB labels, ẑ:
predicted mention labels

1: z∗ ← ẑ
2: for p in pkb do
3: xp ← sortBy(x,Φftθ (xj , p))
4: end for
5: for 1 to R do
6: for p in pkb do
7: xj ← getTopNotAssigned(xp)
8: z∗j ← p
9: markAsAssigned(xj)

10: end for
11: end for
12: return z∗

ẑ can be computed precisely as described above.
Computing z∗, however, is more difficult. Let pkb = {p :

y∗p = 1} be the set of labels specified in the KB to the be
true for instance i. In MultiR, Hoffmann et al. use Algo-
rithm 1 with R = 1, which they motivate as a variant of
the weighted edge cover problem. (This formalization of the
algorithm with the R loop at line 5 is one of our contribu-
tions.) First, z∗ is initialized to ẑ. Then, for each label p that
is active in the KB, the algorithm selects the not-previously-
selected mention xj which the model most confidently la-
beled with p and sets that mention’s label z∗j to p.

To implement the EALA rather than the EALO assump-
tion, we use Algorithm 1 with R = dαM/|pkb|e. This
change allows each active label from the KB to “claim” mul-
tiple mentions until α percent of all the mentions have been
claimed.

Thus, to learn model parameters θ, the system iterates
through the training set, and for each instance i, it (i) in-
stantiates x, y, and z, (ii) computes ẑ, (iii) computes z∗, and
(iv) updates parameters using

θk ← θk + ηt(φ
∗
k − φ̂k)

φ∗k =
∑
j

φk(xj , z
∗
j )

φ̂k =
∑
j

φk(xj , ẑj)

where ηt = η0/
√
t/N , i is the t-th example, and N is the

total number of examples

3.3 Category Mention Features Under EALA
We describe the features we use in more detail in Sec-
tion 4.3, but here we convey an important lesson regarding
category recognition under the EALA assumption. Standard
features for the task of recognizing category mentions fall
into two categories: features of the noun phrase, and fea-
tures of the context. Typical noun phrase features include the
identity of each word in the noun phrase as well as prefixes
and suffixes, and other features. Initially, we tried using such
standard features in our EALA-based and EALO-based sys-
tems. However, we observed that the EALA approach’s use

of multiple mentions for each instance, all of which have
identical noun phrase features, resulted in overly-inflated
weights on those noun phrase features, in particular the word
identities and affixes. Although it is likely that significantly
more negative data could remedy this problem, time and re-
source constraints necessitated other solutions.

Next, although leaving out all noun phrase features led
to the EALA approach out-performing the EALO approach,
we found that basic word shape features on the noun phrases
were required in order to achieve an acceptable overall level
of performance. Hence, we found that in the face of non-
infinite negative data, the optimal solution was to use only
more general noun phrase features, such as POS and word
shape.

3.4 Distributed Implementation
To facilitate subsequent scaling up of distant supervision
both in terms of the number of predicates and the size of
the corpus, our system is implemented in Hadoop4. Our sys-
tem learns model parameters in parallel on different shards
of the dataset and then averages them after each iteration
(McDonald, Hall, and Mann 2010). In all of our experiments
reported below, each system was trained for 10 iterations us-
ing 20 shards.

4 Evaluation
4.1 Corpus
For the unlabeled text corpus in our experiments we used a
random sample of 25% of the documents in a dependency-
parsed version of Wikipedia provided by the Hazy 5 research
group. This corpus consists of 821,186 English web pages
that were downloaded in November 2011. The preprocess-
ing annotations provided in the Hazy collection include POS
tags and NER labels generated using the Stanford CoreNLP
tools 6 and dependency parse annotations generated using
the Malt parser. 7

4.2 Knowledge Base
For the KB in our experiments we used instances down-
loaded from Freebase in June 2013. To determine the set
of categories to consider, we ranked the Freebase categories
(entity types) in descending order by the number of instances
(entities) they had which were mentioned in Wikipedia (us-
ing only canonical entity names). Then, going through this
ranked list from top to bottom and looking at the list of
mentioned instances for each category (along with each in-
stance’s mention count), we discarded those categories for
which the majority of the mentions were very likely to refer
to a different category. For example, the Freebase category
FILM contains many instances, such as “9”, whose mentions
most likely do not refer to the FILM by that name. In our
experiments, we used the top 50 categories that were not
discarded by this procedure.

4http://hadoop.apache.org
5http://hazy.cs.wisc.edu/hazy/
6http://nlp.stanford.edu/software/corenlp.shtml
7http://www.maltparser.org
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Figure 3: Precision-recall curves using the EALO and
EALA assumptions on the category recognition task.

To determine the list of relations, we followed a com-
pletely analogous procedure, with the stipulation that a re-
lation instance mention occurs only if the canonical entity
names of both arguments are found in the same sentence
with no more than 6 tokens between them.8 40 relations were
not discarded by the same procedure and therefore included
in our experiments.

4.3 Features
Our system represents a category mention with the following
features: (i) shortened phrase shape (capitalization pattern),
e.g., AxaxaxA for “Call of the Wild,” (ii) dependency paths
of length one and two steps away from the noun phrase head,
along with the token at the other end of the path, and (iii) tri-
grams from the following token sequence: up to three tokens
on the left, a placeholder for the NP, up to three tokens on
the right.

Our system represents relation mentions with the standard
set of features for this task, which were originally defined by
(Mintz et al. 2009).

4.4 Data Sets
To construct the data sets used in our experiments, we first
computed features for the corpus mentions of all the in-
stances in our KB. Any noun phrase from the corpus that
was not a category instance in our KB became a negative
example, i.e., an instance of the NONE category. For relation
negative examples, i.e., instances of the NONE relation, we
used pairs of KB category instances that were not instances
of any relation in the KB. If an instance (category or relation,
positive or negative) was mentioned more than 100 times in
the corpus, we randomly selected only 100 of its mentions
to use in our experiments. Thus, a learning example consists
of an instance (a noun phrase or noun phrase pair), up to
100 of its mentions from the corpus, and one or more pred-
icate labels: either from the KB, or NONE. In total, we used
1.3M category examples (83K/1.2M pos./neg.) containing

8We ignored all sentences containing more than 100 tokens.
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Figure 4: Precision-recall curves using the EALO and
EALA assumptions on the relation recognition task.

24.9M mentions (2.0M/22.9M pos./neg.) and 1.4M relation
examples (27K/1.4M pos./neg.) containing 2.7M mentions
(148K/2.5M pos./neg.). Finally, we randomly selected 10%
of the examples for the test set and 10% for the development
set, with the rest serving as the training set.

For efficiency during training, we used only a random
sample of 50% of the negative training examples. The de-
velopment and test sets, however, retained the original posi-
tive/negative ratio.

4.5 Experiments
The goal of our evaluation was to examine the effects on
performance of using the EALA assumption when com-
pared with using the EALO assumption for both the cate-
gory and relation recognition tasks. To measure performance
under the EALO assumption, we ran our system using Al-
gorithm 1 with R = 1. This system configuration is essen-
tially the same as the MultiR approach. Of course, for the
EALA approach, we ran the system using Algorithm 1 with
R = dαM/|pkb|e.

First, we trained the EALA-based system on only the
training set, and tuned α separately for categories and re-
lations using the development set. The optimal α for cate-
gories and relations was 0.4 and 0.3, respectively. Then we
combined the training and development sets, trained both
systems (with the optimal α’s for the EALA-based system),
and evaluated their performance on the test set.

We evaluate our systems on the aggregate extraction task:
after predicting the labels for each mention of an instance,
we take the set of labels that were predicted for at least one
mention and compare it with the set of KB labels associated
with that instance. Performance is then measured in terms of
precision and recall of these KB labels.

Figure 3 shows the precision of both systems, as a func-
tion of recall, on the category recognition task. Figure 4
shows the same thing for the relation recognition task.

As might be expected, the EALA assumption leads to
higher recall over the EALO assumption because the system
is able to learn from more training examples. Furthermore,



as these results show, this boost in recall is present at com-
parable levels of precision. In fact, the largest improvements
in recall at comparable precision, 66% increase for category
recognition and 53% increase for relation recognition, are
achieved at a precision of 0.61. Interestingly, the EALA as-
sumption also achieves the highest levels of precision for
category recognition but not for relation recognition.

5 Conclusion and Future Work
In summary, we have given clear evidence that the “ex-
pressed at least once” assumption, which is central to many
distant supervision algorithms for information extraction,
can actually be too weak in many cases. Our experimental
results indicate that significantly higher recall can be ob-
tained by assuming KB facts are expressed multiple times
in the corpus, both for categories and for relations.

However, this study is only the first step in investigating
this issue. In reality, the notion of α put forth in this pa-
per, i.e., the percentage of corpus mentions that actually ex-
press particular meanings, is a fact-specific notion. It seems
that the ideal approach would be to estimate a separate α
for each KB fact and then use those estimates, which essen-
tially are the relative frequencies of different word senses,
to guide the learning procedure. However, from initial in-
vestigation in this direction, we have found that accurate es-
timates of word sense frequencies are very difficult to ob-
tain, even from manually-labeled data. Hence, this line of
research merits additional investigation.
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