
Coupled Semi-Supervised Learning for
Information Extraction

Andrew Carlson
Schoool of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

acarlson@cs.cmu.edu

Justin Betteridge
Schoool of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

jbetter@cs.cmu.edu

Richard C. Wang
Schoool of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

rcwang@cs.cmu.edu
Estevam R. Hruschka Jr.

Federal University of Sao
Carlos

Sao Carlos, SP - Brazil
estevam@dc.ufscar.br

Tom M. Mitchell
Schoool of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

tom.mitchell@cs.cmu.edu

ABSTRACT
We consider the problem of semi-supervised learning to ex-
tract categories (e.g., academic fields, athletes) and relations
(e.g., PlaysSport(athlete, sport)) from web pages, starting
with a handful of labeled training examples of each category
or relation, plus hundreds of millions of unlabeled web doc-
uments. Semi-supervised training using only a few labeled
examples is typically unreliable because the learning task is
underconstrained. This paper pursues the thesis that much
greater accuracy can be achieved by further constraining
the learning task, by coupling the semi-supervised training
of many extractors for different categories and relations. We
characterize several ways in which the training of category
and relation extractors can be coupled, and present exper-
imental results demonstrating significantly improved accu-
racy as a result.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—knowledge acqui-
sition; I.2.7 [Artificial Intelligence]: Natural Language
Processing—text analysis

General Terms
Algorithms, Experimentation

Keywords
Semi-supervised learning, bootstrap learning, information
extraction, web mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

1. INTRODUCTION
Machine learning approaches have been shown to be very

useful for information extraction from text, including ap-
proaches that learn to extract various categories of entities
(e.g., Athlete, City) and relations (e.g., CompanyProduce-
sProduct) from structured and unstructured text [3, 28].
However, supervised training of accurate entity and rela-
tion extractors is costly, requiring a substantial number of
labeled training examples for each type of entity and rela-
tion to be extracted. Because of this, many researchers have
explored semi-supervised learning methods that use only a
small number of labeled examples of the predicate to be
extracted, along with a large volume of unlabeled text [5,
19, 1]. While such semi-supervised learning methods are
promising, they often exhibit unacceptable accuracy because
the limited number of initial labeled examples is insufficient
to reliably constrain the learning process.

Figure 1: We show that significant improvements in

accuracy result from coupling the training of information

extractors for many interrelated categories and relations

(B), compared with the simpler but much more difficult

task of learning a single information extractor (A).

The thesis explored in this paper is that we can achieve
much higher accuracy in semi-supervised learning by cou-
pling the simultaneous training of many extractors, as sug-
gested in Figure 1. The intuition here is that the undercon-
strained semi-supervised learning task can be made easier by
adding new constraints that arise from coupling the training
of many extractors.

We present an approach in which the input to the semi-
supervised learner is an ontology defining a set of target
categories and relations to be learned, a handful of seed ex-
amples for each, and a set of constraints that couple the
various categories and relations (e.g., Person and Sport are
mutually exclusive). We show that given this input and
millions of unlabeled documents, a semi-supervised learning
procedure can achieve very significant accuracy improve-
ments by coupling the training of extractors for dozens of
categories and relations. We show that our general ap-
proach improves accuracies when training both contextual-
pattern extractors that extract information from freeform
text (e.g., the pattern “mayor of arg1” as an extractor for
the category City) and wrappers which extract informa-
tion from semi-structured documents (e.g., the wrapper“<td
class="cty">arg1</td>” from some specific URL).

Based on results reported here, we hypothesize that even
greater accuracy improvements will be possible by forming a
more dense network of inter-constrained learning tasks. To-
ward this end, we explore two more specific points. First,
we identify three general types of coupling among target
functions that can be combined to form a dense network of
coupled learning problems. Second, we explore the impact
of coupling the training of extractors that use freeform text
with extractors that leverage semi-structured web pages,
based on the intuition that these different techniques should
make independent errors.

We believe that the novel contributions of this work are
as follows: Our work is the first to couple the simultaneous
semi-supervised training of category and relation extractors.
It is also the first to couple the training of multiple wrap-
per inducers by using mutual exclusion and type checking
relationships. Finally, this work is the first to couple the
training (rather than the final outputs) of freeform-text ex-
tractors and semi-structured web page wrapper inducers by
assuming that they make independent errors, a method that
we show provides higher accuracies than using either method
alone. More generally, this paper advocates large-scale cou-
pled training as a strategy to significantly improve accuracy
in semi-supervised learning, identifies three distinct types of
coupling, and experimentally evaluates their utility.

2. RELATED WORK
In this paper, we focus on a “bootstrapping” method for

semi-supervised learning. Bootstrapping approaches start
with a small number of labeled “seed” examples and itera-
tively grow the set of labeled examples using high-confidence
labels from the current model. Such approaches have shown
promise in applications such as web page classification [4],
named entity classification [9], parsing [16], and machine
translation [24]. Bootstrapping approaches to information
extraction can yield impressive results [5, 9, 1]. However,
after many iterations, accuracy typically declines because er-
rors in labeling accumulate, a problem that has been called
“semantic drift” [10].

To reduce errors introduced in underconstrained semi-
supervised learning, several methods have been considered.
Coupling the learning of category extractors by using posi-
tive examples of one category as negative examples for oth-
ers has been shown to help limit this decline in accuracy [19,
27]. Co-Training methods exploit conditionally independent
partitions of the feature space to avoid labeling errors [4].
Other non-bootstrapping techniques have used the intuition

that different extraction methods should make independent
errors to motivate combining predictions from multiple ex-
tractors to improve extraction accuracy [22, 6, 18]. Type
checking relation arguments using available entity recogniz-
ers can help avoid incorrect labels [17, 20]. Our work builds
on these different ideas and uses them to couple the simulta-
neous bootstrapped training of many category and relation
extractors in many different ways.

Several machine learning frameworks have been proposed
that penalize violations of constraints on unlabeled data [2,
8, 11]. While similar in spirit, our work differs in that we
consider using many different kinds of constraints to learn
many different functions simultaneously.

In multitask learning, supervised training of“related”func-
tions together can yield higher accuracy than learning them
separately [23, 7]. Semi-supervised multitask learning has
used a prior that encourages related models to have similar
parameters [15]. These methods require that related tasks
share similar representations; our work exploits additional
ways in which functions can be related, and makes no as-
sumptions regarding similarity of representations across the
different functions being learned.

3. COUPLED TRAINING
Central to this work is the idea of coupling the semi-

supervised learning of multiple functions to constrain our
learning problem. Our method iteratively trains classifiers
in a self-supervised manner. It starts by training classifiers
using a small amount of labeled data, then uses these classi-
fiers to label unlabeled data. The most confident new labels
are added to the pool of data used to train the models (we
say that these new labeled examples are promoted), and the
process repeats. The iterative training is coupled by con-
straints that restrict allowable candidates and promotions.

3.1 Types of Coupling
We have identified three general types of coupling:

1. Output constraints: For two functions fa : X → Ya and
fb : X → Yb, if we know some constraint on values ya

and yb for an input x, we can require fa and fb to satisfy
this constraint. For example, if fa and fb are Boolean-
valued functions and fa(x) → fb(x), we could constrain
fb(x) to have value 1 whenever fa(x) = 1.

2. Compositional constraints: For two functions f1 : X1 →
Y1 and f2 : X1 ×X2 → Y2, we may have a constraint on
valid y1 and y2 pairs for a given x1 and any x2. We can
require f1 and f2 to satisfy this constraint. For example,
f1 could “type check” valid first arguments of f2, so that
∀x1, ∀x2, f2(x1, x2)→ f1(x1).

3. Multi-view-agreement constraints: For a function f :
X → Y , if X can be partitioned into two “views” where
we write X = 〈X1, X2〉 and we assume that both X1 and
X2 can predict Y , then we can learn f1 : X1 → Y and
f2 : X2 → Y and constrain them to agree. For example,
Y could be a set of possible categories for a web page,
X1 could represent the words in a page, and X2 could
represent words in hyperlinks pointing to that page (this
example was used for the Co-Training setting [4]).

3.2 Coupling Constraints Used in this Paper
In this work, the functions that we learn are category and

relation extractors, which decide if a noun phrase or pair

of noun phrases is an instance of some category or relation
(generally referred to as a predicate in the rest of this paper).
The general types of coupling discussed above are used to
learn these functions in these specific ways:

1. Mutual Exclusion: The input to our learner has a list of
pairs of predicates which are mutually exclusive. These
relationships are used to enforce an output constraint
over instances: mutually exclusive predicates cannot both
be satisfied by the same input x.

2. Relation Argument Type Checking: We couple the learn-
ing of relation extractors with the learning of category
extractors using type checking. For example, the argu-
ments of the CompanyIsInEconomicSector relation are
declared to be of the categories Company and Economic-
Sector. This is an example of a compositional constraint.

3. Unstructured and Semi-structured Text Features: Noun
phrases on the web appear in two types of contexts:
freeform textual contexts and semi-structured contexts.
For example, “Pittsburgh” occurs on the web with a dis-
tribution of freeform textual contexts such as “mayor of
arg1”, and it also appears with a distribution of semi-
structured contexts such as the HTML tags for a list
item at a particular URL. We assume that either of these
distributions is sufficient to classify a noun phrase, and
that the two distributions are conditionally independent
given the class label of the noun phrase. We therefore
train two noun phrase classifiers, one using each type of
context distribution, and require that the two classifiers
agree on the label for each given noun phrase. This is an
example of a multi-view constraint.

4. ALGORITHMS
In this section, we present algorithms with which we inves-

tigate the feasibility of improving semi-supervised learning
for information extraction with coupling. The general prob-
lem addressed by these algorithms is to learn extractors to
automatically populate the predicates of a specified ontology
with high-confidence instances, starting from a small set of
seed instances for each predicate and a large corpus of web
pages. We focus on extracting facts that are stated multi-
ple times, which we can assess probabilistically using corpus
statistics. We do not resolve strings to real-world entities:
the problems of synonym resolution and disambiguation of
strings that can refer to multiple entities are left for future
work. We focus our consideration of predicates on unary
relations (categories) and binary relations (ones with two
arguments, referred to as relations in this paper).

The specific inputs to our algorithms are: a large text cor-
pus and an initial ontology with predefined categories, re-
lations, mutual-exclusion relationships between same-arity
predicates, and seed instances for all predicates. Each rela-
tion has an ordered pair of argument types, which specify
categories that relation instance arguments must be mem-
bers of. Some additional information is only used by freeform-
text extraction methods: seed extraction patterns for cate-
gories, and a flag for each category indicating whether in-
stances must be proper nouns, common nouns, or can be
either (e.g., instances of City are proper nouns).

The first algorithm, Coupled Pattern Learner (CPL), is
a bootstrapping algorithm that leverages mutual-exclusion
and type-checking constraints to learn high-precision con-
textual patterns that are accurate extractors of predicate

Algorithm 1: Coupled Pattern Learner (CPL)

Input: An ontology O, and text corpus C
Output: Trusted instances/contextual patterns for

each predicate

for i = 1, 2, . . . ,∞ do
foreach predicate p ∈ O do

Extract new candidate instances/contextual
patterns using recently promoted
patterns/instances;
Filter candidates that violate coupling;
Rank candidate instances/patterns;
Promote top candidates;

end

end

instances. The second, Coupled SEAL (CSEAL), is a set
expansion algorithm that learns “wrappers” to extract in-
stances from semi-structured documents and exploits the
same two types of coupling constraints. These two algo-
rithms serve to demonstrate that output and compositional
coupling techniques can improve the accuracy of bootstrapped
training of multiple types of extractors. The final algorithm,
Meta-Bootstrap Learner (MBL), couples the training of sub-
ordinate extraction algorithms like CPL and CSEAL using
multi-view-agreement constraints.

4.1 Coupled Pattern Learner
The Coupled Pattern Learner (CPL) algorithm learns to

extract category and relation instances from unstructured
text, and is summarized in Algorithm 1. CPL learns con-
textual patterns that are high-precision extractors for each
predicate (e.g., “arg1 and other software firms” and “arg1
scored a goal for arg2”) and uses them to grow a set of high-
precision predicate instances. Noun phrases that fill in the
“arg1” and “arg2” blanks of patterns in sentences in the text
corpus are said to co-occur with those patterns.

At the start of execution, CPL initializes sets of pro-
moted instances and patterns with the seed instances and
patterns provided as input. In each iteration, CPL expands
these sets of promoted instances and patterns for each predi-
cate while obeying mutual exclusion and type checking con-
straints. This is accomplished by filtering out candidates
that co-occur with instances or patterns from mutually ex-
clusive classes and by requiring arguments of candidate rela-
tions to be candidates for the relevant categories. Each step
of CPL is discussed in more detail below:

4.1.1 Extracting Candidates
To start each iteration, CPL finds new candidate instances

by using the patterns promoted in the last iteration to ex-
tract noun phrases that co-occur with those patterns in the
text corpus (in the first iteration, the seed patterns are
used). To keep the size of this set manageable, for each
predicate, CPL selects the 1000 candidates that occur with
the most patterns. An analogous procedure is used to ex-
tract candidate patterns using recently promoted instances.

We use part-of-speech-tag heuristics to limit extraction to
instances that appear to be noun phrases and patterns that
are likely to be informative. These are described next:

• Category Instances: In the blank of a category pattern,
CPL looks for a noun phrase. It uses part-of-speech

tags to segment noun phrases and ignores determiners.
Proper noun phrases containing prepositions or conjunc-
tions are segmented using a reimplementation of the Lex
algorithm [13]. Category instances are required to obey
the proper/common noun specification of the category.

• Category Patterns: When a promoted category instance
is found, CPL extracts the preceding words as a can-
didate pattern if they are verbs followed by a sequence
of adjectives, prepositions, or determiners and option-
ally preceded by nouns (e.g., “being acquired by arg1”
or “companies acquired by arg1”) or nouns and adjec-
tives followed by a sequence of adjectives, prepositions,
or determiners (e.g., “former CEO of arg1”). CPL ex-
tracts the words following the instance as a candidate
pattern if they are verbs followed optionally by a noun
phrase (e.g., “arg1 broke the home run record”), or verbs
followed by a preposition (e.g., “arg1 said that”).

• Relation Instances: If a promoted relation pattern (e.g.,
“arg1 is mayor of arg2”) is found, a candidate relation
instance is extracted if both placeholders are valid noun
phrases (according to our part-of-speech-tag heuristics),
and if they obey the proper/common specifications for
their categories.

• Relation Patterns: If both arguments from a promoted
relation instance are found in a sentence then the in-
tervening sequence of words is extracted as a candidate
relation pattern if it contains no more than five tokens,
has a content word, and has an uncapitalized word.

4.1.2 Filtering Candidates using Coupling
Candidate instances and patterns are filtered to enforce

mutual exclusion and type checking constraints. A candi-
date instance is rejected unless the number of times it co-
occurs with a promoted pattern is at least three times more
than the number of times it co-occurs with patterns from
mutually exclusive predicates. This soft constraint is much
more tolerant of the inevitable noise in web text as well as
ambiguous noun phrases than a hard constraint. Candidate
patterns are filtered in the same manner using promoted
instances.

4.1.3 Ranking Candidates
Next, for each predicate CPL ranks candidate instances

using the number of promoted patterns that they co-occur
with so that candidates that occur with more patterns are
ranked higher. Candidate patterns are ranked using an es-
timate of the precision of each pattern p:

Precision(p) =

P
i∈I count(i, p)

count(p)

where I is the set of promoted instances for the predicate
under consideration, count(i, p) is the number of times in-
stance i co-occurs with pattern p in the text corpus, and
count(p) is the number of times pattern p occurs in the cor-
pus.

4.1.4 Promoting Candidates
For each predicate, CPL then promotes at most 100 in-

stances and 5 patterns according to the rankings from the
previous step. Instances and patterns are only promoted if
they co-occur with at least two promoted patterns or in-
stances, respectively. Relation instances are only promoted

Algorithm 2: Coupled SEAL (CSEAL)

Input: An ontology O, and text corpus C
Output: Trusted instances/wrappers for each predicate

for i = 1, 2, . . . ,∞ do
foreach predicate p ∈ O do

begin Call existing SEAL code to:
Query for documents containing recently
promoted instances;
Learn wrappers for each document returned;
Extract new candidates using wrappers;

end
Filter wrappers that extract candidates that
violate coupling;
Rank candidate instances;
Promote top candidates;

end

end

if their arguments are candidates for the specified categories
(that is, they co-occur with at least one promoted pattern
for the category, and are not promoted instances of a mutu-
ally exclusive category).

4.1.5 Large-Scale Implementation
CPL was designed to allow efficient learning of many pred-

icates simultaneously from a large corpus of sentences ex-
tracted from web text. Gathering the statistics needed from
the text corpus is the most expensive part of the algorithm.
The statistics needed come from two types of queries. First,
in the extraction step, CPL has a list of promoted instances
and patterns, and needs to know which patterns and in-
stances co-occur with those instances and patterns. Sec-
ond, in the filtering and ranking steps, CPL needs to know
which candidate patterns occur with which promoted in-
stances, and which candidate instances occur with which
promoted patterns. CPL gathers these statistics from a pre-
processed text corpus which specifies how many times each
noun phrase occurs with each category pattern in the cor-
pus, and also how many times each pair of noun phrases
occurs with each relation pattern. The preprocessing can be
done quickly using using the MapReduce framework [12]. In
each iteration of CPL, CPL gathers corpus statistics from
this data set by scanning through the preprocessed data in
two passes: one for extracting candidates and one for count-
ing co-occurrences. CPL can perform one pass in about 15
minutes from a data set derived from 200 million web pages
(see Section 5.1.2 for details on the corpus).

4.1.6 Uncoupled Pattern Learner
In our experiments, we use a variant of CPL called Un-

coupled Pattern Learner (UPL) which removes the coupling
constraints from CPL. Candidates are not filtered using mu-
tual exclusion with other predicates, and relation arguments
are not type checked. UPL is equivalent to independent
semi-supervised learning of each extractor.

4.2 Coupled SEAL
CPL is an example of a semi-supervised text pattern learn-

ing algorithm that is aided by coupling. To demonstrate how
coupling can improve a different, already implemented ex-
traction algorithm we consider SEAL [26], a wrapper induc-

URL: http://www.shopcarparts.com/
Wrapper: .html" CLASS="shopcp">arg1 Parts

Content: acura, audi, bmw, buick, cadillac, chevrolet, chevy, chrysler, daewoo, daihatsu, dodge, eagle, ford, ...

URL: http://www.allautoreviews.com/
Wrapper:
 <a href="auto_reviews/arg1/
Content: acura, audi, bmw, buick, cadillac, chevrolet, chrysler, dodge, ford, gmc, honda, hyundai, infiniti, isuzu, ...

URL: http://www.hertrichs.com/
Wrapper: <li class="franchise arg1"> <h4>
Content: buick, chevrolet, chrysler, dodge, ford, gmc, isuzu, jeep, lincoln, mazda, mercury, nissan, pontiac, scion, ...

Table 1: Examples of wrappers constructed by CSEAL for various web pages given the seeds: Ford, Nissan,
Toyota. In the table, arg1 is a placeholder for extracting instances.

tion algorithm, and how we can add coupling constraints on
top of an existing implementation that we treat as a “black
box.” First, we will describe the existing algorithm, and
then we will describe how we add coupling constraints.

SEAL is a set-expansion system that accepts input ele-
ments (seeds) of some target set S and automatically finds
other probable elements of S in semi-structured documents
such as web pages by querying the web using the seeds. The
algorithm implemented in SEAL constructs page-specific ex-
traction rules, or wrappers, that are independent of the hu-
man language and markup language of the web pages. SEAL
can expand sets of category instances as well as binary rela-
tion instances. Every category wrapper is defined by char-
acter strings, which specify the left context and right con-
text necessary for an entity to be extracted from a page.
Relation instance wrappers also are defined using an infix
context that separates the two arguments of the instance.
These context strings are selected to be maximally-long con-
texts that bracket at least one occurrence of every seed on
a page. Table 1 shows a few examples of such wrappers for
categories. An instance is extracted by a wrapper if it is
found anywhere in the document with left and right con-
text identical to that of the wrapper. When given large sets
of seeds, SEAL can be configured to “subsample” the seeds
some number of times [25]. Subsampling samples a subset of
the seeds and uses that subset as a query to a search engine,
which is necessary because using all examples in one query
would typically not yield any matched results.

SEAL does not have a mechanism for exploiting mutual-
exclusion or type-checking constraints. Wrappers for each
predicate are learned independently in SEAL. Our algo-
rithm, Coupled SEAL (CSEAL), adds these constraints on
top of SEAL. CSEAL is summarized in Algorithm 2. In
each iteration of bootstrapping, we invoke SEAL using the
recently promoted instances. SEAL returns a list of new
candidate instances and documents that they were extracted
from. CSEAL filters out any document that extracts a can-
didate instance that is a member of a mutually exclusive
predicate. Additionally, CSEAL only considers candidate
relation instances if their arguments are candidate instances
for the respective category types. These forms of coupling
should filter out cases where a subsampled set of seeds hap-
pens to occur on a page but that page does not in fact con-
tain a valid list of predicate instances. They should also
filter out cases where instances of a predicate that is more
general than the one being learned are listed (e.g., if a long
list of locations of various types is present on a page, but we
are learning some specific type of location).

After filtering, CSEAL ranks all candidate instances by
the number of unfiltered wrappers that extracted them, and
promotes the top 100 instances that were extracted by at

Algorithm 3: Meta-Bootstrap Learner (MBL)

Input: An ontology O, a set of extractors E
Output: Trusted instances for each predicate

for i = 1, 2, . . . ,∞ do
foreach predicate p ∈ O do

foreach extractor e ∈ E do
Extract new candidates for p using e with
recently promoted instances;

end
Filter candidates that violate mutual-exclusion or
type-checking constraints;
Promote candidates that were extracted by all
extractors;

end

end

least two wrappers. To deal with web pages from the same
domain that repeat the same list, only one page from a do-
main is counted in ranking candidates. Without limiting
consideration to domains, navigational and other template-
generated elements that repeat many times can dramatically
skew the results.

In our experiments below, CSEAL refers to the algorithm
described here, and SEAL refers to CSEAL without the fil-
tering step: SEAL does not filter out wrappers that ex-
tract candidates that violate mutual-exclusion relations, and
SEAL does not enforce relation instance type checking.

4.3 Meta-Bootstrap Learner
Meta-Bootstrap Learner (MBL) couples the training of

multiple extraction techniques using a multi-view constraint
that requires them to agree. MBL is summarized in Algo-
rithm 3. MBL is based on the intuition that the errors made
by different extraction techniques should be independent.

In this paper, the subordinate algorithms used with MBL
are CSEAL and CPL. When using CSEAL and CPL with
MBL, the subordinate algorithms do not promote instances
on their own. Instead, they skip the promotion step and
report evidence about each candidate to MBL, and MBL
is responsible for promoting instances. MBL uses a simple
combination method: MBL promotes any instance that has
been recommended by both techniques while obeying the
mutual-exclusion and type-checking constraints specified in
the ontology.

5. EXPERIMENTAL EVALUATION
We designed experiments to explore three main questions:

First, does coupling learning using mutual-exclusion and

type-checking constraints improve the performance of CPL
relative to uncoupled, independent learning using UPL? Sec-
ond, do mutual-exclusion and type-checking constraints im-
prove the performance of CSEAL relative to the uncoupled
methods of SEAL? Finally, does MBL achieve better perfor-
mance than CPL and CSEAL by combining their outputs
with a multi-view constraint?

To answer these questions, we ran CPL, UPL, CSEAL,
SEAL, and MBL with CPL and CSEAL as subordinate ex-
tractors for 10 iterations of learning. We then compared the
differences in performance between several pairs of methods
to see the effects of coupling.

Direct comparison to previous work is difficult for a num-
ber of reasons, including the lack of availability of implemen-
tations and the lack of a large shared web corpus. However,
our evaluation directly tests the usefulness of the coupled
approach that we are advocating in this paper. We believe
that the uncoupled baselines are reasonable and competitive
large-scale uncoupled approaches.

5.1 Experimental Methodology

5.1.1 Input Ontology
The ontology used in all experiments contained categories

and relations from two main domains: companies and sports.
Extra categories were added to provide negative evidence to
the domain-related categories (e.g., Hobby for EconomicSec-
tor; Actor, Politician, and Scientist for Athlete and Coach;
and BoardGame for Sport) and also to provide wider variety
for experiments (e.g., Shape, Emotion). Table 2 lists all of
the categories in the leftmost column, and Table 3 lists the
relations in the leftmost column. Categories were initialized
with 15 seed instances and 5 seed patterns. The seed in-
stances were specified by a human, and the seed patterns
for each category were derived from the generic patterns
of Hearst [14]. Relations were initialized with 15 seed in-
stances, 5 seed negative instances (typically incorrect varia-
tions of positive seed examples), and no seed patterns (since
it is not obvious how to generate good seed patterns from
relation names). Most predicates were declared as mutually
exclusive with one another (examples of exceptions include
SportsTeam and University; KitchenItem and ProductType;
and Company and Product).

5.1.2 Corpus for CPL
The text corpus used by CPL was from a 200-million-page

web crawl. We parsed the HTML, filtered out non-English
pages using a stop-word-ratio threshold, then filtered out
web spam and adult content using a “bad word” list. The
pages were then segmented into sentences, tokenized, and
tagged with parts-of-speech using the OpenNLP package.
Finally, we filtered the sentences to eliminate those that were
likely to be noisy and not useful for learning (e.g., sentences
without a verb, without any lowercase words, with too many
words that were all capital letters). This yielded a corpus of
roughly 514 million sentences.

As discussed in Section 4.1.5, we processed these sentences
to create a data set of noun phrase and contextual pattern
co-occurrence counts. To manage the size of the data set, we
filtered out all noun phrases and contexts that only occurred
once in the corpus. This yielded a data set that contained
14.9 million unique contextual patterns for categories, 24.6
million unique noun phrases, 232.0 million unique pairs of

noun phrases that co-occur together, and 35.7 million unique
contextual patterns for relations.

5.1.3 Parameters for SEAL
In our experiments with CSEAL and SEAL, we used an

implementation provided by the original authors of SEAL.
SEAL was configured to subsample the examples provided 5
times for categories and 10 times for relations to mitigate the
relatively higher sparsity of relations. SEAL downloaded up
to 50 web pages for each search query using results from the
Google search engine. Thus, the corpus for SEAL was the
web as indexed by Google. The “minimum context length”
for a wrapper was set to 2, which meant that each part of a
wrapper needed to be at least 2 characters long.

5.1.4 General Experimental Procedure
When comparing two algorithms, we ran each algorithm

for 10 iterations of bootstrapping, and then assessed the
instances promoted by the algorithms. To evaluate the pre-
cision of all instances promoted by an algorithm on a per-
predicate basis, we sampled 30 instances from the set of
promoted instances for each predicate, pooled together the
samples, and submitted the instances to Mechanical Turk
for labeling. This gave an estimate of how accurate all of
the instances were and measured the degree to which a par-
ticular method avoided “semantic drift”. We also compared
algorithms at matching levels of recall. For each predicate,
we only considered the first k instances promoted by each
algorithm, where k was the minimum number of instances
promoted for that predicate between the two algorithms. We
refer to this method of comparison as the minimum recall
method in the results below. We sampled 30 instances from
each of these two sets of instances, and also submitted them
to Mechanical Turk.

While samples of 30 instances do not produce tight con-
fidence intervals for individual estimates of precision for a
single predicate, they are sufficient for testing for the effects
in which we are interested.

CPL can reliably extract the proper case of an instance,
but lists of items on the web often use arbitrary case con-
ventions, so CSEAL cannot reliably extract the proper case
of an instance. Because of this, our evaluation ignored case,
and presented all instances to the evaluators in lower case.

5.1.5 Mechanical Turk Labeling
The various estimates of precision required for our eval-

uation yielded 10717 unique instances. We submitted each
of these instances to Mechanical Turk for labeling and had
three different individuals label each instance. Mechanical
Turk has been shown to be an inexpensive and fast method
for obtaining labels for language tasks [21]. To estimate
the accuracy of the labels produced by this procedure, we
sampled 100 instances at random, and manually judged the
accuracy of their labels. We found that 96 out of the 100
were correctly labeled using the majority vote. The four er-
rors were: a false positive with “entomology there” labeled
as an AcademicField (the labelers ignored the segmentation
error), and three false negatives: “informs” as a Profession-
alOrganization,“love seats”as Furniture, and the relation in-
stance “CompanyCompetesWithCompany(bhp, rio)”. This
suggests that the labels may be biased towards false nega-
tives, which in turn suggests that our precision estimates in
the remainder of the paper may be pessimistic.

Precision (%) Promoted Instances (#)

Predicate CPL UPL CSEAL SEAL MBL CPL UPL CSEAL SEAL MBL

AcademicField 70 83 90 97 100 46 903 203 1000 181
Actor 100 33 100 97 100 199 1000 1000 1000 380
Animal 80 50 90 70 97 741 1000 144 974 307
Athlete 87 17 100 87 100 132 930 276 1000 555
AwardTrophyTournament 57 7 53 7 77 86 902 146 1000 79
BoardGame 80 13 70 77 90 10 907 126 1000 31
BodyPart 77 17 97 63 93 176 922 80 1000 61
Building 33 50 30 0 93 597 1000 57 1000 14
Celebrity 100 90 100 100 97 347 1000 72 747 514
CEO 33 30 100 77 100 3 902 322 1000 30
City 97 100 97 87 97 1000 1000 368 1000 603
Clothing 97 20 43 27 97 83 973 167 1000 102
Coach 93 63 100 83 100 188 838 619 1000 242
Company 97 83 100 100 97 1000 1000 245 1000 784
Conference 93 53 97 90 100 95 990 437 928 92
Country 57 33 97 37 93 1000 1000 130 1000 207
EconomicSector 60 23 100 10 77 1000 1000 34 1000 138
Emotion 77 53 87 60 83 483 992 183 1000 211
Food 90 70 97 80 100 811 1000 89 1000 272
Furniture 100 0 57 57 90 55 963 215 1000 95
Hobby 77 33 77 50 90 357 936 77 1000 127
KitchenItem 73 3 88 13 100 11 900 8 960 2
Mammal 83 50 93 50 90 224 1000 154 1000 169
Movie 97 57 97 100 100 718 1000 566 1000 183
NewspaperCompany 90 60 60 97 100 179 1000 1000 1000 241
Politician 80 60 97 37 100 178 990 30 1000 101
Product 90 83 - 77 70 1000 1000 0 999 127
ProductType 73 63 27 63 50 712 1000 31 1000 159
Profession 73 53 - 57 93 916 973 0 1000 171
ProfessionalOrganization 93 63 100 77 87 104 943 58 1000 163
Reptile 95 3 90 27 100 19 912 149 1000 54
Room 64 0 33 7 100 25 913 12 643 3
Scientist 97 30 100 17 100 83 971 928 1000 130
Shape 77 7 7 7 85 43 985 28 733 26
Sport 77 13 63 83 73 283 1000 225 1000 284
SportsEquipment 20 10 57 23 23 58 902 52 1000 174
SportsLeague 100 7 80 27 86 11 901 10 1000 14
SportsTeam 90 30 87 87 87 301 903 864 944 506
Stadium 93 57 53 63 90 102 767 944 1000 343
StateOrProvince 77 63 83 93 77 202 1000 114 1000 161
Tool 40 13 93 90 97 561 1000 713 1000 59
Trait 53 40 52 47 97 234 1000 21 1000 44
University 93 97 100 90 93 1000 1000 961 1000 516
Vehicle 67 30 50 13 77 460 1000 50 1000 98

Average 78 41 78 59 90 360 960 271 976 199
Weighted average 79 42 86 59 91

Table 2: Precision (%) and counts of promoted instances for each category using CPL, UPL, CSEAL, SEAL, and

MBL.

Precision (%) Promoted Instances (#)

Predicate CPL UPL CSEAL SEAL MBL CPL UPL CSEAL SEAL MBL

CompanyAcquiredCompany 97 77 - - - 93 230 0 0 0
AthletePlaysForTeam 100 93 100 76 100 9 269 4 17 96
AthletePlaysInLeague - 78 100 57 - 0 18 14 82 0
AthletePlaysSport 100 47 100 100 100 83 258 1 1 109
CEOOfCompany 100 100 - 100 100 18 18 0 1 1
CityLocatedInCountry 93 57 100 100 100 185 787 9 577 136
CityLocatedInState 100 70 100 93 100 76 194 34 537 54
CoachCoachesInLeague - - 0 - - 0 0 1 0 0
CoachCoachesTeam 100 100 - - 100 324 668 0 0 6
CompanyIsInEconomicSector 93 97 - - - 583 889 0 0 0
CompanyCompetesWithCompany 100 67 - - - 28 123 0 0 0
CompanyHasOfficeInCity - 63 - 100 - 0 526 0 4 0
CompanyHasOfficeInCountry - 90 - - - 0 195 0 0 0
CompanyHeadquarteredInCity 50 53 100 100 - 2 532 1 2 0
LeaguePlaysGamesInStadium - - - 100 - 0 0 0 177 0
CompanyProducesProduct 97 93 - - 100 54 215 0 0 8
ProductInstanceOfProductType 73 67 - - - 153 484 0 0 0
SportUsesSportsEquipment 33 3 100 87 33 15 1330 5 15 6
StadiumLocatedInCity 100 20 77 70 90 7 600 200 554 56
StateHasCapitalCity 60 70 - 73 - 266 188 0 495 0
StateLocatedInCountry 97 40 100 97 100 194 1299 46 653 61
TeamHasHomeStadium 100 87 100 100 100 97 208 179 106 92
TeamPlaysAgainstTeam 100 80 - - - 238 2088 0 0 0
TeamHasHomeCity - 57 - 93 100 0 680 0 29 11
TeamPlaysInLeague 100 67 100 100 100 7 255 104 749 23
TeamPlaysSport - 70 100 100 100 0 177 30 30 37
TeamWonAwardTrophyTournament 90 70 - - - 128 262 0 0 0

Average 89 69 91 91 95 95 463 23 149 26
Weighted Average 91 61 92 90 99

Table 3: Precision (%) and counts of promoted instances for each relation using CPL, UPL, CSEAL, SEAL, and MBL.

5.1.6 Supplementary Online Materials
Several different types of materials from our evaluation are

posted online at http://rtw.ml.cmu.edu/wsdm10_online:

• Seeds for all predicates.

• All instances promoted by MBL, CPL, UPL, CSEAL,
and SEAL.

• All textual patterns promoted by pattern learning in the
MBL, CPL, and UPL experiments.

• Browseable knowledge bases in XML format of all pro-
moted instances and candidate instances from the runs of
MBL, CPL, and CSEAL, with patterns and URLs that
extracted each instance.

• All judgments obtained from Mechanical Turk.

• An example screenshot from a Mechanical Turk task.

• Templates used to create the Mechanical Turk tasks,
which may be of general use.

5.2 Mutual Exclusion and Type Checking
To explore the effects of coupling predicates using mutual-

exclusion and type-checking constraints, we compared cou-
pled and uncoupled methods for learning contextual pat-
terns for freeform text:

• CPL: The algorithm as described in Section 4.1.

• UPL: This method is an “uncoupled” version of CPL; it
does not couple predicates using mutual-exclusion con-
straints or type checking. Relation instance arguments
are not filtered using their categories and candidate in-

stances and patterns are not filtered out based on vio-
lations of mutual exclusion. The common/proper noun
specifications of arguments are used to filter out implau-
sible instances.

We also compared coupled and uncoupled methods for
learning wrappers to extract lists of instances from semi-
structured web pages:

• CSEAL: The algorithm as described in Section 4.2.

• SEAL: This method uses the implementation of SEAL
provided by the authors of SEAL. As in the UPL method,
it does not couple the learning of predicates using mutual-
exclusion constraints or type checking.

5.2.1 Results
Table 2 gives estimates of the precision of promoted in-

stances for each category for each algorithm, as well as the
number of promoted instances for each category after 10 iter-
ations. The “Average” row averages across all predicates for
which instances were promoted. The “Weighted Average” is
an estimate of the instance-level precision across all predi-
cates obtained by weighting the precision for each predicate
by the number of instances promoted for that predicate. Ta-
ble 3 gives this information for each relation, as well. Across
all categories and relations, CPL has higher average preci-
sion than UPL, and CSEAL has higher average precision
than SEAL. These results suggest that coupling using type
checking and mutual exclusion significantly reduces the error
rates of the learned extractors.

Another method of comparing which algorithms perform
the best is to use the sign test, which is a non-parametric

All Promotions Minimum Recall
Comparison Wins p-value Wins p-value

CPL vs. UPL 55 vs. 12 1.03e-07 37 vs. 8 1.54e-05
CSEAL vs. SEAL 36 vs. 15 0.00460 17 vs. 12 0.458
MBL vs. CPL 34 vs. 18 0.0365 28 vs. 6 0.000195
MBL vs. CSEAL 31 vs. 14 0.0161 18 vs. 6 0.0227

Table 4: Various pairs of methods compared based on

the precision of all promotions for each predicate (All

Promotions) and the precision of the instances promoted

cut off at the minimum recall out of the pair for each

predicate (Minimum Recall). Wins record how many

predicates had superior precision for each method, and

the p-value according to a sign test is given. All re-

sults are statistically significant at the 5% level except

for CSEAL vs. SEAL at minimum recall.

Software
 isA: Product Type, Economic Sector
 productInstances: iTunes, Excel, Adobe
 Photoshop, Microsoft Outlook, AutoCAD,
 Kazaa
 companiesInSector: Infosys, SAP, Microsoft,
 IBM, Wipro, Symantec

Tigers
 isA: Mammal, Sports Team
 teamHomeStadium: Comerica Park
 teamCoach: Les Miles
 teamWonTrophy: World Series
 teamPlaysAgainstTeam: Yankees, Royals,
 Sox, White Sox, Red Sox, Warriors

Figure 2: Examples of extracted facts. The generaliza-

tions of “Software” were given in the seed ontology; all

other facts were discovered by CPL. Values shown for

“productInstances” and “companiesInSector” for “Soft-

ware” are a subset of the full set of promoted values.

hypothesis test. The test statistic needed to compare, for ex-
ample, CPL with UPL, is obtained by counting the number
of predicates for which CPL performed better than UPL,
and vice versa, ignoring ties. This test gracefully handles
predicates where only one method promoted instances: we
prefer the method which extracted some instances rather
than none for such predicates.

Table 4 compares CPL vs. UPL and CSEAL vs. SEAL for
the precision of all promoted instances for each predicate, as
well as the “minimum recall” sample discussed above. CPL
performs statistically significantly better than UPL for both
methods of sampling. CSEAL is significantly better than
SEAL with respect to the precision of all promotions, but
is not significantly better when thresholding recall to the
minimum recall for each predicate. These results confirm
that coupling yields significantly higher accuracies across all
predicates than using independent, uncoupled learning. The
results for CSEAL vs. SEAL suggest that coupling prevents
CSEAL from promoting some incorrect instances but with
some loss in recall.

Figure 2 gives some examples of the type of information
extracted in our experiments. The initial seed examples pro-
vided specified that“software” is a ProductType and an Eco-
nomicSector; the rest of the information in the figure was
extracted by CPL.

5.3 Multiple Extraction Techniques
Tables 2 and 3 also give estimates of the precision of pro-

moted instances for each predicate for MBL after 10 itera-
tions. Across both relations and categories, MBL has the
highest precision of promoted instances out of all of the al-

gorithms considered, which indicates that adding the multi-
view-agreement constraint results in further avoidance of se-
mantic drift. Table 4 gives sign test results for comparing
MBL vs. CPL and MBL vs. CSEAL, which allows us to
judge whether or not MBL improves over its subordinate
algorithms. All sign tests show statistically significant dif-
ferences: MBL is superior to both CPL and CSEAL when
comparing both the precision of all promoted instances as
well as the precision of promoted instances at the minimum
recall of either method. This suggests that coupling CPL
and CSEAL with a multi-view coupling constraint that as-
sumes independent errors yields more accurate learning than
either method used alone.

5.4 Discussion
The results presented here demonstrate that adding more

coupling improves the accuracy of our learned extractors.
One of the biggest challenges in applying bootstrap learn-

ing algorithms is determining when to stop the bootstrap-
ping process. Ideally, an algorithm would be able to respect
the boundaries of a closed set. In this respect, the results for
the Country category for MBL are particularly compelling.
MBL promoted 207 instances of countries with an estimated
precision of 93%. CSEAL promoted 130 instances with an
estimated precision of 97%. Without coupling, Country per-
forms poorly, drifting into a more general Location category.

The categories for which the coupled algorithms still have
the most difficulty (e.g., ProductType, SportsEquipment,
Traits, Vehicles) tend to be common nouns. We expect that
a more complete hierarchy of common nouns would better
constrain these categories and yield better accuracies.

The coupled algorithms generally had high accuracies for
relations, but suffered from sparsity. SportUsesSportsEquip-
ment suffered because the SportsEquipment category per-
formed poorly, resulting in bad type checking. StateHasCap-
ital and CompanyHeadquarteredInCity drifted to the more
general relations of StateContainsCity and CompanyHas-
OperationsInCity. These latter two cases can be improved
by adding the ability to infer negative examples using the
knowledge that these are functional relations: patterns that
extract multiple capitals for the same city could be filtered
out using this knowledge.

Our experiments included five relations for which no in-
stances were promoted by any algorithms: CoachCoaches-
Athlete, AthletePlaysInStadium, CoachWonAwardTrophy-
Tournament, SportPlaysGamesInStadium, and AthleteIs-
TeammateOfAthlete. These relations show that some re-
lations are not easy to extract using the extraction methods
used in this paper. However, many of these relations could
be inferred from instances promoted in our current work.
We plan to investigate learning to infer such relations.

6. CONCLUSION
We have presented methods of coupling the semi-

supervised learning of category and relation instance ex-
tractors and demonstrated empirically that coupling fore-
stalls the problem of semantic drift associated with boot-
strap learning methods. This empirical evidence leads us to
advocate large-scale coupled training as a strategy to signif-
icantly improve accuracy in semi-supervised learning.

Acknowledgments
This work is supported in part by DARPA, Google, a Yahoo!
Fellowship to Andrew Carlson, and the Brazilian research
agencies CNPq and CAPES. We also gratefully acknowl-
edge Jamie Callan for making available his collection of web
pages, Yahoo! for use of their M45 computing cluster, and
the anonymous reviewers for their comments.

7. REFERENCES
[1] Eugene Agichtein and Luis Gravano. Snowball:

Extracting relations from large plain-text collections.
In Proc. of JCDL, 2000.

[2] Maria-Florina Balcan and Avrim Blum. A PAC-style
model for learning from labeled and unlabeled data. In
Proc. of COLT, 2004.

[3] Daniel M. Bikel, Richard Schwartz, and Ralph M.
Weischedel. An algorithm that learns what’s in a
name. Machine Learning, 34(1):211–231, 1999.

[4] Avrim Blum and Tom Mitchell. Combining labeled
and unlabeled data with co-training. In Proc. of
COLT, 1998.

[5] Sergey Brin. Extracting patterns and relations from
the world wide web. In Proc. of WebDB Workshop at
6th International Conference on Extending Database
Technology, 1998.

[6] Michael J. Cafarella, Jayant Madhavan, and Alon
Halevy. Web-scale extraction of structured data.
SIGMOD Rec., 37(4):55–61, 2008.

[7] Rich Caruana. Multitask learning. Machine Learning,
28:41–75, 1997.

[8] Ming-Wei Chang, Lev-Arie Ratinov, and Dan Roth.
Guiding semi-supervision with constraint-driven
learning. In Proc. of ACL, 2007.

[9] Michael Collins and Yoram Singer. Unsupervised
models for named entity classification. In Proc. of
EMNLP, 1999.

[10] James R. Curran, Tara Murphy, and Bernhard Scholz.
Minimising semantic drift with mutual exclusion
bootstrapping. In Proc. of PACLING, 2007.

[11] Hal Daumé. Cross-task knowledge-constrained self
training. In Proc. of EMNLP, 2008.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. Commun.
ACM, 51(1):107–113, 2008.

[13] Doug Downey, Matthew Broadhead, and Oren
Etzioni. Locating complex named entities in web text.
In Proc. of IJCAI, 2007.

[14] Marti A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In Proc. of COLING, 1992.

[15] Qiuhua Liu, Xuejun Liao, Hui Li, Jason Stack, and
Lawrence Carin. Semi-supervised multitask learning.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(6):1074–1086, 2009.

[16] David McClosky, Eugene Charniak, and Mark
Johnson. Effective self-training for parsing. In Proc. of
NAACL, 2006.

[17] Marius Paşca, Dekang Lin, Jeffrey Bigham, Andrei
Lifchits, and Alpa Jain. Names and similarities on the
web: fact extraction in the fast lane. In Proc. of ACL,
2006.

[18] Marco Pennacchiotti and Patrick Pantel. Entity
extraction via ensemble semantics. In Proc. of
EMNLP, 2009.

[19] Ellen Riloff and Rosie Jones. Learning dictionaries for
information extraction by multi-level bootstrapping.
In Proc. of AAAI, 1999.

[20] Benjamin Rosenfeld and Ronen Feldman. Using
corpus statistics on entities to improve
semi-supervised relation extraction from the web. In
Proc. of ACL, 2007.

[21] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. Cheap and fast—but is it good?
evaluating non-expert annotations for natural
language tasks. In Proc. of EMNLP, 2008.

[22] Partha Pratim Talukdar, Joseph Reisinger, Marius
Paşca, Deepak Ravichandran, Rahul Bhagat, and
Fernando Pereira. Weakly-supervised acquisition of
labeled class instances using graph random walks. In
Proc. of EMNLP, 2008.

[23] Sebastian Thrun. Is learning the n-th thing any easier
than learning the first? In Proc. of NIPS, 1996.

[24] Nicola Ueffing. Self-training for machine translation.
In Proc. of NIPS workshop on Machine Learning for
Multilingual Information Access, 2006.

[25] Richard C. Wang and William W. Cohen. Iterative set
expansion of named entities using the web. In Proc. of
ICDM, 2008.

[26] Richard C. Wang and William W. Cohen.
Character-level analysis of semi-structured documents
for set expansion. In Proc. of EMNLP, 2009.

[27] Roman Yangarber. Counter-training in discovery of
semantic patterns. In Proc. of ACL, 2003.

[28] Dmitry Zelenko, Chinatsu Aone, Anthony Richardella,
Jaz K, Thomas Hofmann, Tomaso Poggio, and John
Shawe-Taylor. Kernel methods for relation extraction.
Journal of Machine Learning Research, 3, 2003.

