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ABSTRACT
We consider the problem of automatically acquiring knowl-
edge about the typical temporal orderings among relations
(e.g., actedIn(person, film) typically occurs before wonPrize
(film, award)), given only a database of known facts (rela-
tion instances) without time information, and a large doc-
ument collection. Our approach is based on the conjecture
that the narrative order of verb mentions within documents
correlates with the temporal order of the relations they rep-
resent. We propose a family of algorithms based on this con-
jecture, utilizing a corpus of 890m dependency parsed sen-
tences to obtain verbs that represent relations of interest,
and utilizing Wikipedia documents to gather statistics on
narrative order of verb mentions. Our proposed algorithm,
GraphOrder, is a novel and scalable graph-based label prop-
agation algorithm that takes transitivity of temporal order
into account, as well as these statistics on narrative order of
verb mentions. This algorithm achieves as high as 38.4% ab-
solute improvement in F1 over a random baseline. Finally,
we demonstrate the utility of this learned general knowledge
about typical temporal orderings among relations, by show-
ing that these temporal constraints can be successfully used
by a joint inference framework to assign specific temporal
scopes to individual facts.
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1. INTRODUCTION
Harvesting temporal knowledge from Web sources is an

important research challenge [23]. Web search and Question
Answering (QA) systems can benefit from having knowledge
about entities, their relationships, and the time at which the
relationships hold (i.e., their time scopes) [1]. A closely re-
lated task to time scoping is temporal ordering of relations.
Instead of finding the temporal scopes of relation instances
(or simply, facts), temporal ordering finds order (e.g., be-
fore, simultaneous, etc.) between facts. For example, while
temporal scoping aims to infer that presidentOf(Bill Clin-
ton, USA) was true during 1993 - 2001, temporal order-
ing at the relation level aims to infer that, for the same
person, wasBornIn(person, location) happens before presi-
dentOf(person, country). Knowledge of temporal order can
be useful for temporal scoping. For example, if we know
that Al Gore’s vice presidency was simultaneous with Bill
Clinton’s presidency, and if we know the time scope of Clin-
ton’s presidency, then we can infer the time scope of Gore’s
vice presidency.

We address the problem of inferring temporal ordering of
relations at the macro (corpus) level: a novel, important,
and unexplored problem. Previous research has mostly fo-
cused on temporal ordering at the micro level (i.e., sentence
or intra-document level), and that too over verbs (or single-
verb events). Instead of taking a verb-centric view, we aim
to temporally order relations, where each relation may be
expressed by different verbs in different sentences. For ex-
ample, the actedIn(person, film) relation can be expressed
by the verbs acted, starred, and many others.

This paper explores the feasibility of inducing typical tem-
poral orderings between relations based on the narrative or-
der of inferred mentions of these relations, averaged across
many documents. We define the narrative order of relation
mentions in a document as the textual order of sentences
that contain verbs expressing these relations. We explore
the conjecture that narrative order is correlated with tem-
poral order frequently enough (especially when aggregated
across a large number of documents) for it to serve as a
probabilistic training signal for learning the temporal order.
Such conjecture is appropriate especially in documents that



are each about an entity and the relations incident on the
entity. In such document, relations are frequently mentioned
around the entity in chronological order. Wikipedia is an ex-
ample of a large and broad coverage corpus containing such
documents.

Our temporal order of relations is related to structured se-
quences of participants and events in documents that have
been called scripts [18] or narrative event chains [9], which
are applied to or inferred from the narrative in the docu-
ment. Since scripts are inherently temporal, e.g. restaurant
script, employment script, or kidnapping script; we conjec-
ture that narrative can also be useful for temporal ordering.

Our Contributions: We consider the problem of learn-
ing typical temporal ordering between relations (e.g., acte-
dIn(person, film) happens before wonPrize(film, award)),
given a database of macro-read facts (relation instances)
such as Yago2 [12] without time information. We present
GraphOrder, a graph-based label propagation algorithm for
this task and demonstrate in our experiments that the nar-
rative order of mentions of these relation instances (i.e.,
verbs expressing the relations), aggregated over a large num-
ber of documents, can be exploited as probabilistic train-
ing signals to infer the temporal ordering of the relations.
We also mine syntactic information in the form of subject-
verb-object triples from a large corpus of 890m dependency
parsed sentences1 and show how such information can be ef-
fectively used for finding these relation mentions. Through
experiments on several domains of real-world datasets, we
show the effectiveness of our method. We also propose
CoTSSoft, which extends a recent collective inference frame-
work for temporal scoping [20], to handle soft temporal or-
dering constraints generated by GraphOrder. We incorpo-
rate our automatically acquired constraints into this frame-
work and show the effectiveness of our learned temporal or-
der constraints for temporal scoping of relation instances.

2. PROBLEM DEFINITION
Here we introduce our terminology and define the problem

considered in this paper. We use the term relation to refer
to any general typed binary relation r (e.g., directed(person,
film) whose two arguments are of type person and film),
and the term relation instance (or simply, fact) to refer to
any instance of that relation (e.g., directed(George Lucas,
Star Wars)). We say that a verb v expresses a relation
r if mentions of v in documents frequently represent facts
of relation r, with RelVerb(r, v) measuring the strength of
this association. Default(r) is a function which returns a
single default (or representative) verb (extracted from the
relation name) which represents relation r. For example,
Default(actedIn) = “act”.

We use the term narrative order between verbs v1 and v2

within a document collection to refer to statistics about the
sequence in which v1 and v2 are mentioned within the doc-
uments: we use NBefore(v1, v2) to measure how often v1 oc-
curs before v2 in a text narrative, and use NSimultaneous(v1, v2)
to measure how often v1 occurs in the same sentence (i.e.,
simultaneously) as v2 in the text narrative. We use the term
temporal order between relations r1 and r2 to refer to the
temporal sequence in which these relations occur in the real
world. Specifically, we use TBefore(r1, r2) to represent that

1To the best of our knowledge, this is one of the largest
parsed corpus ever used for temporal extraction task.

facts of relation r1 typically occur temporally before facts
of r2 involving at least one shared argument. Similarly, we
use TSimultaneous(r1, r2) to denote that facts of these two
relations typically occur at the same time (i.e., there is a
significant overlap between their temporal spans). We note
that while TSimultaneous is a symmetric relation, TBefore is
not. Our temporal orders are partial and uncertain (or soft).
Given that many relations have only probabilistic temporal
precedence, the non-negative values of TBefore(r1, r2) and
TSimultaneous(r1, r2) are intended to capture a degree of
confidence that increases monotonically with this probabil-
ity. In this paper, we consider the following problem:

Problem Statement: Given (1) a set of typed binary
relations R with one common argument type, which we shall
refer to as the domain; (2) for each relation r ∈ R, a set of
facts Qr; and (3) an unlabeled text corpus C, where each
document in the subset D ⊂ C describes one instance from
the domain; we would like to estimate the temporal rela-
tionship for each pair of relations in R, i.e., estimate values
for TBefore(ri, rj), TSimultaneous(ri, rj) ∈ R+, ∀ri, rj ∈ R,
where higher values represent higher confidence that the cor-
responding temporal relationship holds.2

Example: Let R = {actedIn(person, film), directed
(person, film), wonPrize(film, award)} be the set of typed
binary relations, with common argument type film. Hence,
film will also be the the domain in this case. Let the set
of facts for each relation be as follows: QactedIn = {(Tom
Hanks, Forrest Gump)}, Qdirected = {(Robert Zemeckis,
Forrest Gump)}, andQwonPrize = {(Forrest Gump, Academy
Awards)}. LetD be a singleton set consisting of the Wikipedia
page on the film ”Forrest Gump”, and let C be its superset
consisting of additional documents sampled from a large text
corpus such as [7]. Given these as input, we would like to
determine the temporal relationship (i.e., estimate values for
TBefore and TSimultaneous) for each pair of relations in R.

Please note that since our inputs do not consist of any
labeled data with temporal orderings annotated (as in [17]),
our proposed method is unsupervised with respect to this
task.

3. METHOD

3.1 Overview
The central thesis behind the method introduced here is

that: “Statistics aggregated from a large number of docu-
ments about narrative orders of verbs representing two rela-
tions can serve as probabilistic training signals for learning
the temporal order between the two relations.”

Let us consider two relations incident on film instances:
directed and wonPrize, whose default verbs are “directed”
and “won,” respectively. If in documents discussing film in-
stances, we predominantly observe the narrative order di-
rected → won, i.e., NBefore(directed, won)� NBefore(won,
directed), this should increase our estimate of TBefore(directed,
wonPrize). In other words, NBefore(directed, won), which
can be estimated directly from free text, can be exploited to
estimate the unobserved TBefore(directed,wonPrize) (and
similarly for TSimultaneous). Based on the thesis mentioned
above, our proposed approach consists of three phases, which
are outlined in Figure 1. We next describe each of these three
phases.

2R+ is the set of non-negative real numbers
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Figure 1: Outline of our proposed method which consists of three phases (see Section 3.1 for an overview). In
the first phase, each relation is represented by a set of verbs (Section 3.2); in the second phase, the narrative
order over verb mentions are estimated (Section 3.3); and in the final phase, the temporal order for each
relation pair is estimated (Section 3.4).
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Figure 2: Finding verbs that express relations by
mining a collection of subject-verb-object (SVO)
triples extracted from 890m dependency parsed sen-
tences (Section 3.2).

3.2 Find Verbs that Express Relations
To identify verbs that express a particular relation r, we

consider the given set of input facts Qr representing known
instances of relation r. Each fact f ∈ Qr is a triple, 〈fa1,
fa2, frel〉 containing the values of the first argument, second
argument, and the name of relation (in this case r), respec-
tively. An example of a fact is 〈Tom Hanks, Forrest Gump,
actedIn〉3. We draw on work on distributional similarity be-
tween verbs [10] and other means of grouping verbs that
share the same lexical items in subject/object positions [6].
In particular, for each relation r we identify verbs whose
mentions occur with subject/object pairs that match the
known instances of relation r in Qr.

3Alternatively, we also write it as actedIn(Tom Hanks, For-
rest Gump)
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Figure 3: Narrative orders of verbs (e.g., directed,
starring, won, etc.) in documents from the film do-
main (Section 3.3). Each document describes one
instance (e.g., ”Forrest Gump”) from the domain
(film in this case). These narrative orders provide
guidance for learning temporal order of relations
(e.g., actedIn(person, film), directed(person, film),
wonPrize(film, award)) (Section 3.4).

More specifically, to identify the verbs associated with
relation r (as illustrated in Figure 2), we use a large col-
lection of Subject-Verb-Object (SVO) triples which can be
compared to the facts Qr about relation r. We construct
this dataset of SVO triples by first parsing 50m Web doc-
uments (890m sentences, 16B tokens) using the MALT de-
pendency parser [16], and then extracting SVO triples from
these parsed sentences4. We aggregate all the SVO triples
and count their frequency using Hadoop. This yields in
a dataset with 114m triples, which we shall refer to as S.

4Details on the SVO triple extraction will appear in a longer
version of this paper.



Fields within each tuple s ∈ S can be accessed using the fol-
lowing: ssbj , sobj , sverb, and scnt, which return the subject,
object, verb, and the count of the tuple, respectively. To
the best of our knowledge, this is one of the largest depen-
dency parsed corpora that has ever been used in published
research5.

Let Sv = {s | sverb = v, s ∈ S} be the set of tuples in S
with v as its verb. Also, let US = {u | |Su| > 0} be the set
of unique verbs in S, and let U be the overall set of unique
verbs under consideration. We have,

U = US ∪ {Default(r) | r ∈ R} (1)

We now compute RelVerb(r, v) to measure whether verb v ∈
U expresses relation r as follows:

RelVerb(r, v) =

I1(r, v) +
∑
f∈Qr,s∈Sv

I2(f, s)× scnt∑
u∈U

[
I1(r, u) +

∑
f∈Qr,s∈Su

I2(f, s)× scnt
] (2)

where I1(r, u) = 1 iff ∃r ∈ R such that u = Default(r),
and 0 otherwise; and I2(f, s) is another indicator function
which returns 1 whenever arguments of f and s match, i.e.,
(fa1, fa2) = (ssbj , sobj) or (fa1, fa2) = (sobj , ssbj), and 0
otherwise. We now define Fr, the set of verbs used to express
relation r as follows,

Fδ,r = {v ∈ U | RelVerb(r, v) > δ}

where δ ∈ R is a threshold, which is set to 0 for the exper-
iments in this paper. Examples of the top-5 elements from
the set Fδ,actedIn relation, are as follows: stars, features, ’s,
costars, starring. This suggests that this method is able to
automatically discover meaningful verbs to express a given
relation.

3.3 Estimating Narrative Order of Verbs
Once we find the set of verbs that express relations, we

find mentions of these verbs in documents in D, as illus-
trated in Figure 3. Since each document in D is about a
domain instance (Section 2), we make a simplifying assump-
tion that verbs appearing in the same document are sharing
the domain instance as subject/object argument. In the fu-
ture, a dependency parse of sentences in the document can
be used to find verbs sharing the same domain instance as
subject/object.

We shall represent a document d ∈ D as a sequence of
sentences sorted as per the narrative order, with |d| denoting
the total number of sentences in the document, and dk(1 ≤
k ≤ |d|) returning the kth sentence in document d.

Now, for each sentence dk, we compute the sentence score
(SS) of each (r, v) pair mentioned in the sentence.

SS(dk, r, v) =
VerbCount(dk, r, v)∑

r∈R,v∈U VerbCount(dk, r, v)
(3)

where VerbCount(dk, r, v) is the number of times verb v
is used to express relation r in sentence dk. This can be
estimated by matching the arguments of v in dk against Qr,
the set of facts from relation r. However, we shall make
a simplifying assumption and increment verb count by 1
whenever we come across v in dk, subject to the condition
that v ∈ Fδ,r (increasing δ may improve precision of verbs

5The SVO triples dataset is available from the authors on
request.

expressing a relation, but may affect recall). The scoring
in Equation 3 will discount scores for verbs which express a
large number of relations.

We then define the narrative order scores for two verbs v1

and v2 in a document d as the sum of scores (SS) of v1 and v2

in all pairs of sentences for which v1 is before v2, and the sum
of scores of v1 and v2 in all sentences where v1 and v2 both
occur. We then aggregate these per-document narrative or-
ders across all documents containing v1 and v2 by taking the
average of these per-document scores as the final narrative
order scores NBefore(v1, v2) and NSimultaneous(v1, v2) for
the verbs v1 and v2.

We note that Rel-grams [2], a recently proposed semantic
resource, may also be used to estimate NBefore, although
it is less clear how this resource can be used to estimate
NSimultaneous.

3.4 Estimating Temporal Order of Relations
Once we find narrative order of verbs as described in Sec-

tion 3.3, we infer temporal order of relations expressed by
these verbs using two methods. The first, Pairwise (Sec-
tion 3.4.1), is a non-transitive method that determines the
order for two relations ri and rj by making pairwise de-
cisions. The other method, GraphOrder (Section 3.4.2),
uses a novel graph-based label propagation algorithm to
temporally order relations in a joint optimization, and also
while taking transitivity into account.

Because we are the first to address the problem of tempo-
rally ordering relations, there are no existing techniques that
we could compare to. In our experiments, we compare the
resulting temporal order of relations to a random baseline
inspired by [9], which addresses a related but different prob-
lem. We also use our non-transitive method, Pairwise, as
baseline to compare to GraphOrder, our proposed transitive
graph-based method.

3.4.1 Pairwise Temporal Ordering of Relations
We now define scores for the the temporal order relations

TBefore and TSimultaneous as follows:

TBefore(ri, rj) =
1

Z

∑
u,v∈U

RelVerb(ri, u)×

NBefore(u, v)× RelVerb(rj , v) (4)

TSimultaneous(ri, rj) =
1

Z

∑
u,v∈U

RelVerb(ri, u)×

NSimultaneous(u, v)× RelVerb(rj , v) (5)

where TSimultaneous(ri, rj) = TSimultaneous(rj, ri) and
Z = TBefore(ri, rj) + TBefore(rj, ri) + TSimultaneous(ri, rj)
is the normalizing factor. As is evident from the equations
above, the temporal ordering scores for a pair of relations
are obtained by marginalizing over all the verb pairs used to
express the two relations. We call this method Pairwise.

3.4.2 GraphOrder: Collective Temporal Ordering of
Relations

The temporal ordering method described in previous sec-
tion makes pairwise decision considering two relations at a
time. However, it is conceivable that instead of ordering
two relations at a time, a collective framework which looks
at all relations at once could be useful. Transitivity is one
such benefit that is possible in this collective ordering frame-
work. For example, the pairwise method might infer that



TBefore(r1, r2) and TBefore(r2, r3) are true, but it might
fail to identify that TBefore(r1, r3) is also true. However,
if we considered all three relations at the same time, then
it might be easier to establish the temporal relationship be-
tween r1 and r3. Although simple transitive closure would
work well in case of hard orderings, it is not clear how such a
closure could be computed with soft ordering constraints, as
is the case in our setting, where there is inherent uncertainty
in the inferred temporal orders. We note that the methods
for inducing global ordering over soft orderings [5, 8] are not
applicable in the current setting, as instead of a single global
ordering, we are interested in finding the transitive closure
over the soft orderings.

In order to overcome these challenges, we propose a novel
graph-based label propagation algorithm GraphOrder, which
is both parallelizable and scalable. We first create a graph
G = (X,E,W ) whose vertices X = R∪U (see Equation 1),
i.e., each vertex is either a relation or a verb. Edges in
this graph consist of the following mix of directed and undi-
rected edges6: (1) undirected edge between relation r and
verb v with edge weight Wr,v = RelVerb(r, v); (2) directed
edge between verb vi and vj with Wvi,vj = NBefore(vi, vj);
(3) undirected edge between verb vi and vj with Wvi,vj =
NSimultaneous(vi, vj); (4) directed temporal order edge be-
tween relations ri and rj with Wri,rj = TBefore(ri,rj); and
(5) undirected temporal order edge between ri and rj with
Wri,rj = TSimultaneous(ri, rj). This graph is very similar
to the one shown in Figure 1, except that there are no doc-
ument nodes here. We have E = ED ∪EU where ED is the
set of directed edges while EU is the set of undirected edges.

We shall now inject each relation node u ∈ R ⊆ X with
a unique node specific label lu. This seed information is
stored in the initial label matrix Y with Yu,lu = 1. Each such
relation specific label lu has another temporally-after variant
~lu, which can be interpreted as follows: if another relation

node v ∈ R is assigned the label ~lu with high score, then we
should infer that there is a before(u, v) relationship between
the two relations. Otherwise, a high lu score on v should
lead us to infer that there is a simultaneous(u, v). Following
[19], we shall also have a none-of-the-above label, >, which
we shall use as an automatic threshold on the label scores.
Let L be the total set of labels with total |L| = 2 × n + 1
labels in it, where |R| = n is the total number of relations.

In order to perform collective node classification and thereby
infer temporal ordering among relations, our proposed algo-
rithm, GraphOrder, optimizes the following objective func-
tion (Equation 6),

min
{Ŷu,l}

µ1

∑
u∈R

(Yu,lu − Ŷu,lu)2

+ µ2

∑
(u,v)∈ED,l∈L

Wu,v × (Ŷu,l − Ŷv,~l)
2

+ µ2

∑
(u,v)∈EU ,l∈L

Wu,v × (Ŷu,l − Ŷv,l)2

+ µ3

∑
x∈X,l∈L

(Ŷu,l −Mu,l)
2 (6)

where µ1, µ2, µ3 are hyperparameters, and M is a regular-
ization matrix, and Ŷu,l ∈ R is the output variable which

6By directed, we refer to edges corresponding to NBefore
and TBefore; and by undirected to edges corresponding to
NSimultaneous and TSimultaneous orders.

measure the score of label l assigned to node u. The ob-
jective above is convex7 and is similar in spirit to the QC
criteria [3] and MAD [19] that tries to minimize difference
between predicted and actual labels, with the critical dis-
tinction that the second term in this objective involves di-
rected edges with transformed labels across the edge (l vs
~l). We develop a Jacobi iteration-based iterative algorithm
to solve this objective7. However, in order to handle the
directed edges, whenever a label l is to be spread over the
directed edge (u, v) ∈ ED, instead of updating the score for
label l on v, we transform the label and update the score for
~l on v. We iterate this process for a fixed number of itera-
tions8, after which the assigned labels are used to infer the
temporal relations as described earlier in this section. The
objective function and solution to the optimization problem
are detailed in the Appendix (Section A and Section B).

The algorithm we propose above is novel as no previous la-
bel propagation algorithm has considered the situation when
there is a need to transform labels during propagation. Also,
this algorithm is essentially self-supervised as no external
hand labeled data is necessary. As we will see in the ex-
perimental results in Figure 4, the proposed algorithm ef-
fectively combines these strategies for the task of temporal
order acquisition.

4. EXPERIMENTS

4.1 Experimental Setup
We select entities in Yago2 [12] as our domain instances.

We select relations in Yago2 that are incident on these enti-
ties to temporally order and their relation instances (facts)
to temporally scope. Yago2 is a knowledge base contain-
ing entities and relations automatically extracted from the
entities’ Wikipedia infoboxes. For this reason, we choose
Wikipedia as the source of our unlabeled corpus D. Each
document in D is thus about an entity (i.e., contains the
entity in its infobox). Although Wikipedia pages, being gen-
eral purpose, may seem more chronological and thus better
suit the assumption that narrative follows temporal order,
we show in experiments that the choice of Wikipedia pages
does not in fact trivialize the problem. There is enough vari-
ation in the narrative sequence of verb mentions in Wikipedia
that we benefit from aggregation. We use Wikipedia pages
without any special processing, omitting infoboxes, using
only sentences in the page sorted by their narrative order in
the page.

The relations we want to temporally order and whose in-
stances we want to time scope are chosen from the domains:
albums, cricketers, films, footballers, novels, operas, plays,
politicians, and songs. For each domain, we select the top
25 relations that have at least one argument belonging to
the domain, to temporally order (based on the number of re-
lation instances/facts). We also select as domain instances,
whose Wikipedia pages we use as our corpus D, the top 1000
Yago2 entities that participate the most in these relations.
By doing so, we ensure that D contains a lot of information
on the relations we want to temporally order. We define an
argument of a relation as belonging to the domain films
if it belongs to any Wikipedia category that ends with the
word “ films”: e.g. wikicategory 1930s crime films, etc.

7Please see appendix for details.
8Set to 10 iterations for the experiments in this paper
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Figure 4: Comparison of performance of the tempo-
ral constraint acquisition methods discussed in the
paper. We observe that the graph-based inference
method GraphOrder (Section 3.4.2) (i.e., the right-
most bar) achieves the best performance on average.

For example, the top 5 relations selected for the domain
films are actedIn, wasCreatedOnDate, directed, created, and
produced. A lot of relations in Yago2 are biographical (birth,
death) due to the nature of the infoboxes. We also notice
that some entities are categorized incorrectly in Wikipedia,
e.g., a person maybe categorized as films9. These may lead
to irrelevant relations selected, e.g., wasBornIn for films.

4.2 Temporal Ordering Experiments
Following [9], we use a random baseline which generated

300 random sets of pairwise orderings for each domain. In
each set, we generate the same number of orderings as that
learned by GraphOrder (described below), and the perfor-
mance is averaged across these 300 sets. As there are no
existing methods that output temporal orders at the re-
lation level, we use the methods that are based on Pair-
wise Temporal Ordering (Section 3.4.1): using default verbs
only (Pairwise) or using also verbs derived from the SVO
dataset (Pairwise++) as additional baselines. We com-
pare these baselines to our proposed method GraphOrder
(Section 3.4.2), which performs collective temporal ordering
using label propagation-based inference over a graph consist-
ing of constraints from the Pairwise++ system. We observe
that GraphOrder converges quite fast (10 iterations are usu-
ally sufficient).

For each domain and each method, we obtain temporal
orderings of relations and the scores of the orderings. Each
ordering is between a pair of relations. For evaluation, for
each domain and each method we create a directed acyclic
graph (DAG) of the learned orderings, traversing over the
orderings from the highest score to the lowest score, and
adding an ordering to the DAG only if it does not conflict
with previously added orderings.

Similar to temporal evaluation in [9], we hand identify
a gold standard set of temporal orderings for each domain.
All attempts were made to include every before and simul-
taneous relation that can exist between the relations for the

9http://en.wikipedia.org/wiki/Joseph Kessel is a person
that has a Wikipedia category: “Novels adapted into films”

domain or that could be deduced through transitivity rules.
We ignore temporal orders of relations that are ambiguous to
humans. For example, isMarriedTo and actedIn, one can
be before or after the other at the relation-level. We eval-
uate each temporal ordering (i.e., each edge) in the DAG
for correctness according to the gold standard. Precision is
computed as the number of edges marked correct over the
total number of edges marked unambiguous in the DAG.
Since it is difficult to determine upfront the full set of valid
temporal orderings, we decide to estimate the recall with
respect to the largest number of correct edges returned by
any one of the compared methods. Using precision and the
estimated recall, we compute F1 (Figure 4).

Experimental results comparing these four systems are
shown in Figure 4. We see that GraphOrder performs better
than all three baselines on average and across all domains,
showing the merit of our graph-based, unsupervised, macro
learning of temporal orderings. On average, we observe a
38.4% improvement in F1 score over the random baseline
for GraphOrder.

In Figure 4, we see that performance (F1) of Pairwise++
is higher than Pairwise on average and across all domains
except in footballers. This indicates that adding verbs from
SVO typically improves temporal ordering and demonstrates
the benefits of having a more flexible representation of rela-
tions that involves multiple verbs. We see that the highest
increase in performance is in politicians, in which we find
the largest number of SVO verbs (118 verbs) to represent
the relations. In contrast, we only obtain one verb from
SVO: “had visited” that represents the influences relation
in footballers. In this case, adding verbs from SVO does
not help performance and may even degrade it if the verb
found does not really express the relation, as in this case.

In Figure 4, we observe that performance of GraphOrder
is higher than the non-transitive baselines (Pairwise++ and
Pairwise). In terms of precision and estimated recall, we find
that GraphOrder increases recall without hurting precision.
On average, GraphOrder increases the number of correctly
learned temporal orderings by 48.7% from that learned by
Pairwise++ and this improves the F1 score by 12.2%. This
shows how collective reasoning using label propagation can
improve temporal ordering.

A few examples of temporal orders learned by GraphOrder
in politics and in films are shown in Figure 5. As can be seen
from the figure, in case of politics, the method is able to learn
orderings pretty accurately: all relations happen after was-
BornIn. In addition, a person must be a citizen of some
country if he happens to hold a political position, and/or is
a leader of something. We also notice that a politician or
a leader must have an influence at least before he dies. In
case of films, the method learns correctly that the process of
creating a movie: producing, directing, acting must hap-
pen in the same period of time and all before the movie can
win a prize. However, there are still questionable ordering
such as diedIn before hasWonPrize (possibly winning an
award posthumously), and mistake such as wasBornIn si-
multaneous produced. We note that all these orderings have
scores attached to them which can be taken into account in
any subsequent consumption of these constraints, as we do
in temporal scoping (Section 4.4).



Figure 5: Examples of temporal orderings of relations in politics (left) and films (right) which were auto-
matically learned by GraphOrder. Directed arrow indicates a before relation while each bi-directed arrow
indicates a simultaneous relation. The score on each edge indicates the confidence of the temporal order.
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Figure 6: Performance of GraphOrder as the num-
ber of Wikipedia documents from which the narra-
tive order of verbs are estimated is increased. We
observe that the overall temporal ordering perfor-
mance improves as increasing number of documents
are used to estimate narrative order. All results are
averaged over the 9 domains.

4.3 Effect of Aggregation on Temporal Order-
ing

The goal in this section is to measure what effect aggre-
gation of narrative order of verbs from a large number of
Wikipedia documents has on final temporal ordering of re-
lations. In Figure 6, we report the temporal ordering per-
formance of GraphOrder, the best performing system from
Section 4.2, as the fraction of Wikipedia documents from
which narrative order of verbs are estimated is increased.
All results are averaged across 9 domains. From Figure 6,
we observe that performance improves sharply as the frac-
tion of documents used is increased. This demonstrates the
value of aggregation for temporal ordering. The results in
Figure 6 suggest that a small number of documents (e.g.,
1%) are not sufficient for optimal temporal ordering perfor-
mance. This also suggests that the use of Wikipedia doesn’t
trivialize the problem as otherwise a small number of doc-
uments would have been sufficient for reliable estimation of

Domain Constraint Precision Recall F1
Source

Films
None 55.6 (5.7) 49.9 (5.5) 52.6 (5.6)

GraphOrder 71.0 (3.8) 62.3 (4.1) 66.4 (4.0)
Manual 89.1 (5.6) 70.6 (3.3) 78.8 (4.0)

Novels
None 53.4 (7.5) 37.5 (9.2) 43.8 (8.5)

GraphOrder 67.2 (12.1) 44.4 (13.1) 53.0 (12.7)
Manual 60.8 (7.1) 41.4 (12.3) 48.8 (11.0)

Songs
None 31.0 (4.9) 16.5 (2.6) 21.5 (3.4)

GraphOrder 60.0 (5.4) 26.9 (1.6) 37.1 (2.4)
Manual 43.5 (4.3) 20.8 (2.4) 28.1 (2.9)

Table 1: Results of temporal scoping experiment us-
ing the CoTSSoft framework, with different sources of
inter-relation temporal ordering constraints: None
(i.e., no such constraints used), constraints inferred
by GraphOrder (Section 3.4.2), and manually en-
coded constraints. All results are averaged over five
evaluation sets, with standard deviation indicated
in brackets. For each domain, the setting with high-
est F1 score is marked in bold. See Section 4.4 for
details.

narrative orders and thereby temporal order of relations. In-
stead, these results suggest that document specific inconsis-
tencies can be overcome through aggregation across a large
set of documents, resulting in improved temporal ordering
performance.

4.4 Temporal Scoping Experiment
The experiments described above establish that GraphOrder,

our proposed approach, can acquire knowledge of the typ-
ical temporal ordering between different relations. In this
section we explore how useful these learned temporal con-
straints are, for the task of assigning specific temporal scope
to individual facts (instances of these relations). In particu-
lar, we use an extended version of the CoTS system [20] to
temporally scope facts from the Yago KB. CoTS is a joint in-
ference ILP framework for temporal scoping that combines
the rising and falling of counts of occurrences of facts in
documents over time (as a signal to indicate the period of
validity of the facts), with constraints about the facts (si-



multaneous, before or after temporal orders) to infer the
temporal scope of facts (i.e., the interval of time when a
fact is true). The original CoTS system [20] can only han-
dle hard and unweighted constraints, which is not adequate
in our case as the temporal ordering constraints learned by
GraphOrder are soft and weighted in nature. In order to
overcome these limitations, we present an extension of the
CoTS system, which we shall refer to as CoTSSoft.

CoTSSoft System: Let xr,s,t ∈ {0, 1} be a binary vari-
able with xr,s,t = 1 whenever fact r from relation s is true
at time t, and 0 otherwise. Let zbr,s,t ∈ {0, 1} be a binary

variable with zbr,s,t = 1 indicating that fact s started to be
true at time t. Similarly, zer,s,t = 1 indicating that fact s
ceased to be true at time t. Let b(r, s, t) be our initial belief
that fact s from relation r is true at time t. Now, given a
temporal order TBefore(a, c) with score qa,c, and two facts
u and v from the relations a and c, respectively, CoTSSoft

introduces the following constraint,∑
t t ∗ z

e
a,u,t −

∑
t t ∗ z

b
c,v,t − ξa,u,c,v ≤ 0

where ξa,u,c,v ∈ {0, 1} is a binary slack variable which allows
this constraint to be violated, but not without suffering a
penalty of qa,c in the objective as we shall see shortly. Please
note that CoTSSoft enforces this soft-constraint iff facts u
and v have a shared argument entity. CoTSSoft also uses
the Consistency constraints from [20] to make sure the zb,
ze and x variables are consistent with one another at any
given time. CoTSSoft uses the following set of inequalities
to encode a TSimultaneous(a, c) ordering between the two
facts u and v from above at any given time t.

xa,u,t ≤ xc,v,t + ξa,u,c,v,t

xc,v,t ≤ xa,u,t + ξc,v,a,u,t

where ξa,u,c,v,t and ξc,v,a,u,t are binary slack variables. Let
∆ be the set of all slack variables, with qξ representing the
penalty associated with slack variable ξ. We now present the
objective optimized by CoTSSoft subject to the constraints
presented above.10

max
{xr,s,t}

∑
r,s,t

b(r, s, t) ∗ xr,s,t − γ ×
∑
ξ∈∆

qξ × ξ

where γ is a hyperparamater which we set to 1 for all the ex-
periments in this section. We use the Mosek11 optimization
package to solve this Integer Linear Program (ILP).

We now describe the experimental setup used to evaluate
the usefulness of temporal orderings learned by GraphOrder.
In this section, we experiment with three domains: films,
novels and songs. For each domain, we obtain facts from
the Yago2 KB as in previous sections, a subset of which is
already temporally scoped. We split this subset into two
parts, with the first set consisting 80% of the facts. We keep
the temporal scopes of the first set fixed as prior knowledge,
and use the CoTSSoft system to predict temporal scopes for
the other set. We then compare predicted temporal scope
with truth to compute precision, recall and F1. We repeat
this process five times for each domain, generating a separate

10Please note that even though we discuss only two types of
constraints here, slack variable-based extensions of all the
constraints in the CoTS system have been implemented in-
side CoTSSoft. We refer the reader to [20] for a complete
listing of these constraints.

11http://www.mosek.com/

split each time. All results are averaged over these five runs.
For each split, we evaluate temporal scoping performance of
the CoTSSoft system when injected with inter-relation tem-
poral ordering constraints obtained from three sources: (1)
None (i.e., when no temporal ordering constraints are used);
(2) temporal orders learned by GraphOrder in Section 4.2;
and (3) manually crafted ordering rules. For all experimen-
tal runs, we required CoTSSoft to make point predictions
(i.e., unit length temporal scopes). For each fact r(a, b) we
query the Gigaword corpus12 with ”a AND b” or ”a AND
Default(r)” if b is a date, to estimate b(r, s, t). We perform
all evaluations at the year granularity, and since Gigaword’s
coverage is limited to the period 1994-2008, we only consider
facts which are true during this period.

Experimental results comparing these three ordering gen-
erators are presented in Table 1. For all three domains, we
observe that GraphOrder leads to improvement in perfor-
mance (F1) compared to when no constraints are used. In-
terestingly, constraints learned by GraphOrder outperforms
manually crafted constraints in two out of the three domains.
This might be due to the incomprehensiveness of the man-
ual rule writing process leading to omission of certain use-
ful orders, which were included in the orderings learned by
GraphOrder.

Next, we evaluate whether the temporal orders learned by
GraphOrder, along with CoTSSoft, can be used to increase
Yago2’s temporal coverage, i.e., temporally scope Yago2 facts
which are currently not scoped. We experiment with facts
from the films domain (total 1831 facts), and fix all facts
that are already temporally scoped (such as instances of
produced). We then use the CoTSSoft system to temporally
scope facts from the actedin relation, which are currently
not scoped. Using random sampling-based manual evalua-
tion of 100 facts, we observe a temporal scoping precision
of 69.8%. Thus, we are able to increase Yago2’s temporal
coverage at a modest precision, showing the merit of learn-
ing temporal constraints by GraphOrder and using them for
temporal scoping. A few examples of correct scoping are:
2001 for actedIn(Jason Biggs, American Pie 2); 1996 for
actedIn(John Neville, High School High). Examples of an
incorrect scoping is: 1998 for actedIn(Judy Davis, Decon-
structing Harry) (correct: 1997).

5. RELATED WORK
Schank and Abelson [18] first proposed hand-coded scripts

to describe frequently recurring social situations such as a
visit to a restaurant. Our work is similar in spirit to scripts.
However, instead of hand coding scripts, we automatically
identify verbs that can express a relation, find sequence of
these verbs in a document, and aggregate over similar se-
quences in a large number of documents to infer temporal
order of relations expressed by the verbs.

We also draw from Chambers and Jurafsky’s [9] automatic
induction of script-like structure called narrative events chain.
We use a related notion of protagonist (domain) overlap to
relate the set of relations we temporally order. But we dif-
fer in that we use narrative order to serve as probabilistic
training signals for learning temporal order; and use unsu-
pervised method of temporal ordering instead of a super-
vised classifier. Also, their focus is to output the narrative
chain of verbs in a document while ours is to output the

12English Gigaword: http://bit.ly/KJMTYr



typical temporal order of relations over a large number of
documents.

Fujiki et al. [11] investigated script acquisition by arrang-
ing first paragraphs of news articles based on their dates of
issue. In contrast, we do not use such date of issue times to
order paragraphs in documents, thus our method is applica-
ble more widely even to documents without creation time.
We also temporally order relations instead of just verbs.

Timely YAGO [22] harvests temporal facts using regular
expressions in Wikipedia infoboxes, but is not applicable
to arbitrary text. PRAVDA [21] harvests temporal facts
using a combination of textual patterns and graph-based
re-ranking techniques to extract facts and their temporal
scopes at the same time. In contrast, our goal is to in-
fer typical temporal order of relations, and not temporally
scope individual facts. However, our experiments demon-
strate that knowledge of typical temporal order can be ef-
fective in improving temporal scoping performance.

There are several algorithms for classifying temporal rela-
tions between events [15, 8, 24]; many of them trained on the
TimeBank [17] dataset. Unlike these methods, we propose a
self-supervised method for temporal ordering that does not
require labeled data. While these previous works focused
on temporal ordering of events with one verb per event, we
temporally order relations that are represented by a group of
verbs. To the best of our knowledge, there is no other work
on temporal ordering of relations. However, these previous
works are complementary in that their output can be used
as additional verb ordering signals to augment our narrative
order statistics.

Finally, CoTS [20] is a recently proposed system for tem-
porally scoping relational facts which so far used manually
edited temporal order constraints. While manual ordering
is appealing, unfortunately it is not very scalable as in prac-
tice hundreds of relations, whose numbers are ever increas-
ing, may need to be ordered. As demonstrated in Section 4,
our automatically acquired, scalable temporal orderings can
be a replacement for the current manual rules in CoTS. We
also extend CoTS framework to CoTSSoft which can handle
weighted constraints through the use of slack variables.

Learning to model ranked data from partial [13] and pair-
wise preferences [14] has been recently studied. While the
pairwise orderings in [14] are unweighted, the orderings in
GraphOrder are weighted. Also, these previous studies con-
sidered only one type of ordering relationship between two
items (viz., whether one item is preferred over the other),
while GraphOrder uses two ordering relationships, TBefore
and TSimultaneous, to compare two items (relations in our
case). More importantly, in contrast to these previous ap-
proaches, the goal in GraphOrder is not to learn a ranking
model, but to expand an initial set of weighted pairwise
temporal orderings by taking transitivity into account.

6. CONCLUSION
In this paper, we address the problem of learning typ-

ical temporal orderings over relations (e.g., learning that
directed(person, film) typically occurs before wonPrize(film,
award)). This problem is important because this type of
knowledge can play a key role in assigning temporal scope
to specific instances of these relations (e.g., to determine
when the relation instance wonPrize(Gone With The Wind,
Academy Award) occurred). We present both a method for
acquiring this type of general ordering knowledge from dis-

tant supervision, and a method for using this knowledge
to infer temporal scope for specific instances of these rela-
tions. To acquire this knowledge, we introduce GraphOrder,
a novel graph-based collective label propagation method.
Our approach is based on the assumption that relation men-
tions in sentences are often expressed by verbs, the assump-
tion that narrative order of verbs correlates with the tem-
poral order of the relations they represent, and the fact that
temporal orderings are transitive. Our approach mines a
corpus of 890m dependency parsed sentences to discover
verbs that express relations of interest, and collects statistics
about mentions of these verbs over a large number of doc-
uments. We show the effectiveness of our proposed method
for learning temporal orders of relations, compared to non-
transitive and random baselines. We also show the utility
of this learned knowledge about temporal ordering, for the
problem of assigning temporal scope to specific instances of
these relations. In future work, we would like to explore
alternative approaches of estimating narrative order. We
would also like to extend the proposed algorithms to learn-
ing orderings when some relation arguments are instanti-
ated, and believe the knowledge our current system learns
can serve as useful priors for acquiring this information.
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APPENDIX
A. GraphOrder OBJECTIVE IS CONVEX

We first reproduce the objective function minimized by
the label propagation-based GraphOrder algorithm presented
in Sec 3.2.2 (Equation 6), and write it as a sum of two func-
tions as follows.

J({Ŷul}) = J1({Ŷul}) + µ2 × J2({Ŷul})

where

J1({Ŷul}) = µ1

∑
u∈R

(Yu,lu − Ŷu,lu)2

+ µ2

∑
(u,v)∈EU ,l∈L

Wu,v × (Ŷu,l − Ŷv,l)2

+ µ3

∑
x∈X,l∈L

(Ŷu,l −Mu,l)
2

where µ1, µ2, µ3 ≥ 0 are hyperparameters and

J2({Ŷul}) =
∑

(u,v)∈ED,l∈L

Wu,v × (Ŷu,l − Ŷv,~l)
2

From the construction of the graph, we have Wu,v ≥ 0, i.e.,
all edge weights are non-negative. From the analysis in [19],
we know that J1 is a convex function. We also know that
the non-negative weighted sum of two convex functions is
also a convex function [4]. Putting all of these together, we
shall be able to prove that J is convex if we can show that
J2 is a convex function.

We rewrite J2 as the non-negative weighted sum of even
smaller functions:

J2({Ŷul}) =
∑

(u,v)∈ED,l∈L

Wu,v × J
′
2(Ŷul, Ŷv~l)

where J
′
2(Ŷul, Ŷv~l) = (Ŷu,l − Ŷv,~l)

2.
Now, reusing the non-negative weighted sum property of

convex functions once again, we can show that J2 is con-

vex if each J
′
2(Ŷul, Ŷv~l) is instead convex (please note that

Wu,v ≥ 0, ∀u, v). We shall prove that J
′
2 is indeed a con-

vex function by showing that its Hessian is a Positive Semi-
Definite (PSD) matrix.

After some algebra, we can show that the Hessian matrix

of J
′
2(Ŷul, Ŷv~l) is H2×2 =

[
2 −2
−2 2

]
and that it is PSD as

for any x = [x1x2]T , we have xTHx = 2(x1 − x2)2 ≥ 0.

From this we conclude that J
′
2(Ŷul, Ŷv~l) is convex, which

implies that J2 is convex, and which in turn implies that
J , i.e., the objective function function optimized by the
GraphOrder is indeed convex.

B. SOLVING GraphOrder OBJECTIVE
In the previous section, we proved that the objective J

minimized by GraphOrder is convex. Hence, the optimal
solution is obtained by setting δJ

δŶu,l
= 0, ∀u ∈ X, l ∈ L.

Following the analysis in [3], we develop a Jacobi itera-
tion method and end up with the following iterative update,
which updates the score for label l at node u at time instant
t+ 1 as follows:

Ŷ
(t+1)
u,l =

B
(t)
u,l

B
(t)
u,u

B
(t)
u,l = µ1 × Suu × I(lu, l)× Yu,l +

µ2 ×
∑

v:(u,v)∈ED

Wu,v × Ŷ (t)

v,~l
+

µ2 ×
∑

v:(u,v)∈EU

Wu,v × Ŷ (t)
v,l + µ3 ×Mu,l

B(t)
u,u = µ1 × Suu × I(lu, l) + µ2 ×∑

v:(u,v)∈ED

Wu,v + µ2 ×
∑

v:(u,v)∈EU

Wu,v + µ3

Above, S is a diagonal matrix with Su,u = pinju when u ∈ R
(the set of relation nodes) and 0 otherwise, with pinju set
using the equations in Sec 2.2 of [19]; I(lu, l) = 1 iff u ∈ R
and l is the node specific label for relation node u. While

computing Ŷ
(t+1)

u,~l
, we consider l =

~~l. This iterative pro-

cess is updated until convergence or until a fixed number of
iterations. We have found that the iterations usually con-
verge with a small number of iterations. We also note that
the iterative updates above can be easily parallelized in the
MapReduce framework using Hadoop, and hence the opti-
mization can be applied to large graphs.


