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ABSTRACT
Recent research has made significant advances in automati-
cally constructing knowledge bases by extracting relational
facts (e.g., Bill Clinton-presidentOf-US) from large text cor-
pora. Temporally scoping such relational facts in the knowl-
edge base (i.e., determining that Bill Clinton-presidentOf-
US is true only during the period 1993 - 2001) is an im-
portant, but relatively unexplored problem. In this pa-
per, we propose a joint inference framework for this task,
which leverages fact-specific temporal constraints, and weak
supervision in the form of a few labeled examples. Our
proposed framework, CoTS (Coupled Temporal Scoping),
exploits temporal containment, alignment, succession, and
mutual exclusion constraints among facts from within and
across relations. Our contribution is multi-fold. Firstly,
while most previous research has focused on micro-reading
approaches for temporal scoping, we pose it in a macro-
reading fashion, as a change detection in a time series of
facts’ features computed from a large number of documents.
Secondly, to the best of our knowledge, there is no other
work that has used joint inference for temporal scoping. We
show that joint inference is effective compared to doing tem-
poral scoping of individual facts independently. We con-
duct our experiments on large scale open-domain publicly
available time-stamped datasets, such as English Gigaword
Corpus and Google Books Ngrams, demonstrating CoTS’s
effectiveness.
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1. INTRODUCTION
There has been much research on extracting relational

facts from both structured and unstructured text. Systems
such as YAGO [21], KnowItAll [10], TextRunner [4], and
NELL [7] gather entities and factual relations between enti-
ties from Web sources. However, much of the effort has been
focused on gathering facts without their temporal scope.
Facts are treated as time-invariant when in reality they dy-
namically change with time. New facts arise while others
cease to be valid or change over time. Knowledge grows in
various dimensions, and completely new entity types, rela-
tion types or knowledge structures may arise with time [28].
For example, the fact that Bill Clinton is a US President
is only valid from the year 1993 to 2001. Such temporally
scoped facts are useful for many reasons. Temporal infor-
mation can be used as a dimension along which facts can
be organized, ranked, or explored. Time can be helpful for
relevancy ranking purposes. Presenting facts in a timeline
can greatly benefit user experience in their exploration of
knowledge evolution [2]. In a search or question answering
system, time-sensitive queries such as business-intelligence
queries (e.g., when did certain companies acquire other com-
panies?) or medical queries (e.g., when did a certain vaccine
become available?) will also benefit from temporally scoped
facts. Temporal scoping of facts can also benefit other natu-
ral language applications, such as document summarization
where the temporal information of facts mentioned in sen-
tences can be used to generate better sentence ordering.

Despite the importance of time in any information space,
gathering and distilling temporal knowledge from Web sources
remains a major research challenge [28]. To the best of our
knowledge, Timely YAGO [27] and PRAVDA [26], two re-
cently proposed techniques, are the only systems which try
to harvest temporal facts. Timely YAGO tries to automat-
ically scope facts using regular expressions in Wikipedia in-
foboxes, and hence is not applicable to widely available free
text. PRAVDA, a promising recent approach, uses a combi-
nation of textual patterns and graph-based re-ranking tech-
niques to harvest facts and their temporal points at the same
time. However, it is not immediately clear how this approach
could be used to temporally scope facts in an existing knowl-
edge base. Other works on temporal information extraction
have tackled partial aspects of the problem such as tempo-
ral relations identification between events [6, 14, 5, 16, 8, 29,
13]. However, these other works are not sufficient to tempo-
rally scope facts as they are all focused on micro-reading of
time at a single document or sentence level, i.e., temporal ex-
pressions and relations are normalized and identified based



Figure 1: Architecture of the CoTS system (see Section 2 for an overview). Details of the Local Classification
and Collective Inference modules are presented in Section 3.1 and Section 3.2, respectively.

only on features derived from the document. However, web
is unique in that it typically offers ample redundancy, and
hence it only seems natural to aggregate many observed cues
for a temporal fact in a statistical manner [28]. This is what
we attempt to do in our work, a macro-reading of temporal
information from large-scale sources such as Google Books
Ngram [15] and newswire text in Gigaword [12] using their
document creation times (DCTs) to temporally scope facts.

Our contribution to this important but largely unexplored
problem of temporal scoping is to propose a novel system,
CoTS (Coupled Temporal Scoping), with multi-fold benefits.

• Firstly, in the spirit of macro-reading, CoTS uses a
statistical approach to the problem, by using simple
counts of facts in documents over time as cues to their
temporal validity. Without going into document con-
tent, CoTS represents a fact by a time series of its
counts over time. We believe time series is a natural
way of representing a fact as it models directly the dy-
namic nature of the fact, its rise and fall over time.
Evidence of change in time series is used as cues to
classify whether the fact is active or not at any given
time.

• Secondly, CoTS is novel in that we introduce collec-
tive1 temporal inference over multiple temporally cor-
related facts to aggregate many observed cues for im-
proved time scoping. Independent activation scores of
facts are input to a collective inference framework, and
Integer Linear Programming (ILP) is used to infer the
temporal scope of facts while respecting various tem-
poral dependencies among those facts, such contain-
ment, alignment, succession, and mutual exclusion.

• Thirdly, CoTS is weakly supervised: we need only a
few labeled examples to train a local classifier (one
for each relation), the only supervised component in
CoTS. Moreover, CoTS provides a flexible framework
where prior knowledge about the temporal dependen-
cies among facts can be easily specified.

1In this paper, we shall use the terms collective inference,
coupled inference, and joint inference interchangeably.

• Lastly, through experiments on interesting open-domain
datasets such as the Google Books Ngram Corpus and
the Gigaword Newswire Corpus, we demonstrate CoTS’
effectiveness in improved temporal scoping, highlight-
ing benefits of scoping multiple temporally related facts
jointly, rather than scoping each such fact in isolation.

2. CoTS OVERVIEW

2.1 Challenges & Motivation
The problem of macro-reading the temporal scope of a

fact from its counts in documents is a difficult one as these
counts can be noisy, lagging in time, or sparse. A fact may
still be found in documents (i.e., its count is not zero) even
after it ceases to be valid. For example, some documents
discuss the presidency of Kennedy even after his death. The
document creation time may also lag behind a fact’s acti-
vation time. For example, books about President Clinton
may only be published some months after his inauguration
(since books often take longer time to print and publish than
news). Some facts are not mentioned enough in documents,
leading to the sparsity of their counts. For example, unlike
the President relation, the US Secretary of State relation
may not be mentioned as frequently in documents.

These challenges of the problem motivate our approach.
Firstly, to deal with the issue of time lag, especially in books
data, we use also the change in the counts over time to cap-
ture the activation of a fact. A positive gradient in the time
series of a fact’s counts indicates that the fact is increas-
ingly being talked about in documents, which may signal its
activation time. Using positive gradients as additional in-
formation can capture change points based on the moment
they start to be increasingly mentioned in data.

Secondly, to deal with the noise and sparsity of counts, we
conduct collective inference to temporally scope several facts
jointly. The advantage of doing collective inference is multi-
fold. By utilizing temporal constraints between correlated
facts, collective inference can bind the temporal scope of
noisy facts by ensuring temporal consistency between facts,
or inform the time scope of a sparse fact from the time scope
of other, temporally correlated facts.

For example, in a functional relation (e.g., US presiden-



Figure 2: Temporal profiles of two facts demonstrat-
ing potential benefit of collective inference: consider-
ing ’President Bush’ during inference can help deter-
mine the end of Reagan’s presidency (shaded region).

Figure 3: Temporal graph (dotted red edges) imposed
over a factual graph (blue solid edges). Edges in the
temporal graph correspond to constraints in CoTS, the
proposed system.

tial relation), knowing the time scope of one instance of the
relation can bind the time scope of another instance of the
same relation since no two instances of a functional relation
can be true at the same time (i.e., no two persons can be
US president at the same time). This constraint is great
to bind noisy, frequently mentioned facts. For example,
although documents may still refer to Kennedy as ’Presi-
dent Kennedy’ even after his death, knowing that Johnson’s
presidency began in 1963 and that his presidency succeeded
Kennedy’s can help bind the time scope of Kennedy’s pres-
idency. For example, in Figure 2, we can see how knowing
the start of Bush’s presidency can bind the end of Reagan’s
presidency, even though ’President Reagan’ continues to be
mentioned in documents even after his presidency.

Conversely, for facts that are sparse (e.g., those belonging
to the US vice president relation), knowing the time scope of
a correlated fact can help infer the time scope of the sparse
fact. For example, the time scope of Clinton’s presidency
can be used to infer the time scope of Gore’s vice presidency
knowing that Gore served under Clinton’s presidency.

Allowing users to specify temporal constraints between
facts is also a natural way of adding prior knowledge to the
task of temporal scoping. In Figure 3, we illustrate vari-
ous temporal constraints that can be specified for US ad-
ministration relations. Solid lines indicate factual relations
(entity-relation-entity triplets) while dashed lines indicate
temporal constraints between these facts. As we can see
from Figure 3, temporal alignment between VicePresident
and SenatePresident relations indicates that Al Gore must
be vice president of the US at the same time that he is the
president of US senate. Temporal mutual exclusion between
President and Governor relations indicates that Bill Clin-
ton cannot be both President of the US and Governor of
Arkansas at the same time. Temporal containment between
Citizen and President relations indicates that Bill Clinton
must be a President of the US within the period that he is
a citizen of the US. Temporal succession between facts in-
dicates that the time scope of Bush-presidentOf-US follows
the time scope of Clinton-presidentOf-US.

2.2 System Architecture
Figure 1 summarizes the high level architecture of our

work to temporally scope facts, which involves the following
pipeline of operations:

1. Query: To macro-read the temporal scope of a fact,
we first construct a query to represent the fact. For
example, the fact: ’Kennedy-presidentOf-US’ is rep-
resented by the query ’President Kennedy’. Then we
do a lookup of the query on the indices we have built
for Google Books Ngram and Gigaword datasets. We
gather raw counts of the results: i.e., the number of
n-grams containing the query (for Google Books) and
the number of times a query is found in the news doc-
uments (for GigaWord). Each fact is thus represented
by a time series of its query counts, normalized over
its total query counts.

2. Local Classification: Normalized counts and gradi-
ents of each fact are then input to a Maximum Entropy
classifier which computes the conditional probability
that the fact s from relation r is active at a given time
t, i.e., pr(+1|s, t). As discussed previously, gradient in-
formation is included as a feature in this classification
to capture the informative signal of increasing counts
which may indicate the start of the fact’s activation.
Using only normalized counts and where they peak to
classify start time may not be sufficient, as the peak
may not always coincide with the start time due to
possible time difference (lag) between the actual start
time and the document creation time.

3. Collective Inference: Individual classification scores
of the facts, pr(+1|s, t) and pr(−1|s, t), are then input
to a collective inference engine (in our case, an Inte-
ger Linear Program (ILP)) together with the temporal
constraints we have described and illustrated in Fig-
ure 3. ILP then predicts which facts are active at which
times, based on the input classification scores and the
specified temporal constraints. The outputs are then
the facts and the times for which they are active.

3. SYSTEM DESCRIPTION
In this section, we present detailed descriptions of the

three main modules in the CoTS system.



Notations
• Let {S1, . . . , Sm} be sets of facts, one set for each of

the m relations. We would like to temporally scope
each fact s ∈ Sr, ∀1 ≤ r ≤ m. In this paper, we shall
use the relation index, r, also to refer to the relation
name itself.

• Let B and E be the beginning and end of the times-
pan over which the temporal scoping is currently per-
formed. We shall assume that any time instant t ∈
{B, . . . , E} is discretized at an appropriate granular-
ity, which for the experiments in this paper is at the
year level.

• pr(+1|s, t) is the local classification score specific to
relation r, which measures whether the fact s ∈ Sr

is true at time t. Please refer to Section 3.1 for a
discussion on estimating such scores.

• xr,s,t ∈ {0, 1} is a binary integer variable, where xr,s,t =
1 indicates that fact s ∈ Sr is true at time t ∈ {B . . . E},
and false otherwise.

• zbr,s,t ∈ {0, 1} is a binary integer variable, where zbr,s,t =
1 indicates that fact s started to be true at time t.

• Similarly, zer,s,t ∈ {0, 1} is a binary integer variable,
where zer,s,t = 1 indicates that fact s ceased to be true
at time t.

3.1 Local Classification Scores
In this section, we describe how we estimate the initial

score, pr(+1|s, t) ∈ [0, 1], which measures the probability of
fact s ∈ Sr being true at time t. We obtain these initial
scores by training a Maximum Entropy (MaxEnt) classi-
fier, separately for each relation r. For each relation r, we
assume that we are given a set of training instances Tr =
{(φr(s, t, y), y)}, where φr(s, t, y) ∈ Rd is the d-dimensional
representation of fact s ∈ Sr at time t, and y ∈ {−1,+1} is
its label, with y = 1 suggesting that the fact is true at time
t, and −1 otherwise.

For each relation r, these labeled instances are then used
to estimate parameters wr of corresponding MaxEnt clas-
sifier. The classifier can then be applied to classify an unla-
beled instance u at time t using Equation 1.

pr(+1|u, t) =
exp(wT

r · φr(u, t,+1))∑
y exp(wT

r · φr(u, t, y))
(1)

This score gives an estimate of how likely it is that fact u
from relation r is true at time t. We note that pr(+1|u, t) is a
probability distribution and hence it is bounded in [0, 1]. We
use both positive and negative real numbers as the values
for our features. The actual features that we use for the
experiments in this paper are described below.

Features:
Using the Query module described in Section 2.2, we ob-
tain a timeline Lu for each fact u, where Lu(t) returns the
(normalized) count of fact u at time t. We use Lu(t) as the
count feature. We also compute the gradient over Lu at t,
and use the gradient value as the gradient feature. This
feature helps in adapting the classifier to adapt to time-lag
issues as described in Section 2.1. We use only these two

features in the local classifier. Since the local classifier es-
timates its parameters from a very small number of labeled
instances, we wanted to make sure the the local classifier
doesn’t overfit severely which is possible in the presence of
large numbers of features.

3.2 Collective Inference
In our system, time scoping each fact in isolation corre-

sponds to making the final scoping decisions based purely on
the scores pr(+1|u, t) as described in previous section. While
such scores provide useful discriminating information, they
are often noisy, leading to incorrect time scoping decisions.
Lack of discriminating features, paucity of labeled training
data, and inherent hardness of the classification task itself
could be one of several reasons leading to these noisy predic-
tions. While obtaining large amounts of labeled data may
not be practical, incremental improvements may be possible
by employing more sophisticated features. We take a dif-
ferent approach and as motivated in previous sections, we
introduce here a way to use these prediction scores, and at
the same time exploit available domain-specific constraints.
To this effect, in this section, we present the Integer Lin-
ear Program (ILP)-based collective inference module of our
system. First, we present the constraints that can be spec-
ified in our system, and then present the objective which is
ultimately optimized subject to the constraints.

3.2.1 Constraints
Constraints in the CoTS system can be categorized into

the following two classes:

1. Intra Relation Constraints: These constraints reg-
ulate the temporal scoping of one or more facts from a
single relation. For example, Functional constraints
(described below) belong to this category, which can
enforce the requirement that at most one fact from
the relation can be true at any given time. For ex-
ample, there is only one US President at any given
time. Please note that such requirements can be en-
forced only if multiple facts from the same relation
are considered jointly during temporal scoping, which
is strictly not possible in case of temporal scoping of
each fact in isolation.

2. Cross Relation Constraints: Constraints in this
category couple temporal scoping of facts from multi-
ple relations. For example, we may want to enforce the
requirement that Al Gore’s Vice Presidency aligned
exactly with Bill Clinton’s Presidency. Aligned con-
straints (described below) operating over the Vice Pres-
ident and President relations can be used to enforce
such requirement.

Please note that all our constraints are specified at the fact
level, even though they may affect one or more facts from
the same or multiple relations. Below, we present examples
of different constraints exploited by the CoTS system for the
experiments in this paper.

• Consistency: The following constraints make sure
that the begin (zbr,s,t) and end (zer,s,t) variables are
consistent with the xr,s,t variables.

– BeginConsistency1: For a fact to start at a
given time, the fact should also be true at that
time.



zbr,s,t ≤ xr,s,t, ∀s ∈ Sr, t ∈ {B, . . . , E}

– BeginConsistency2: For a fact to begin at time
t, the fact should not be true at time t − 1 and
become true at t. We use the boundary condition
xr,s,(B−1) = 0.

zbr,s,t ≥ xr,s,t − xr,s,(t−1), ∀s, t ∈ {B . . . E}

– EndConsistency1: For a fact to end at a given
time, the fact should also be true until that time.

zer,s,t ≤ xr,s,t, ∀s ∈ Sr, and t

– EndConsistency2: For a fact to end at time t,
the fact should be true at time t and not true at
t+1. We use the boundary condition xr,s,(E+1) =
0.

zer,s,t ≥ xr,s,t − xr,s,(t+1), ∀t ∈ {B . . . E}

• Functional: For a given relation r, these constraints
enforce the requirement that no two facts from r be
true at the same time.∑

s xr,s,t ≤ 1, ∀t ∈ B . . . E

As an example, Functional constraints can be used
to enforce the fact that there can be at most one Vice
President in USA at any given time. Functional con-
straints are Intra Relation in nature.

• SingleSpan: These constraints make sure that any
fact from a relation r is true continuously for a sin-
gle span of time, without any interruption in between.
For example, US presidencies tend to be a single con-
tinuous span of time. SingleSpan, another member of
the Intra Relation constraint class, is actually a set of
constraints, which we describe below. Below, we shall
assume that the fact belongs to relations r.

– SingleBegin: For each fact, there is at most one
beginning. This is ”at most” and not ”equal” as
the fact may not be activated during the time
interval B . . . E.∑

t z
b
r,s,t ≤ 1, ∀s ∈ Sr

– SingleEnd: For each facts, there is at most one
end. ∑

t z
e
r,s,t ≤ 1, ∀s ∈ Sr

– EndAfterBegin: End of the fact should happen
after its beginning.∑

t t ∗ z
e
r,s,t −

∑
t t ∗ z

b
r,s,t ≥ 0, ∀s ∈ Sr

• Point: This constraint is useful when the fact is true
only at one instant of time, i.e., the temporal span has
unit length. For example, even though Steven Spiel-
berg has multiple Academy Award for Best Director,
length of temporal scope of each win is of unit length,
at the year granularity.∑

t xr,u,t ≤ 1, ∀u ∈ Sr

Please note that this is different from the Functional
constraint as the sum here is over all t ∈ {B . . . E}, as
opposed to all facts s in case of Functional. Point
constraints are Intra Class.

• Aligned: This constraint is useful whenever two facts
(from same or different relations) have exactly same
temporal span. For example, George H.W. Bush was
the Vice President throughout Ronald Reagan’s pres-
idency. In other words, if facts u ∈ Sa and v ∈ Sc

are temporally aligned, then xa,u,t = xc,v,t, ∀t. We
enforce this through two inequality constraints.

xa,u,t ≤ xc,v,t, and xc,v,t ≤ xa,u,t, ∀t ∈ {B . . . E}

• Containment: Suppose, we want to express the fact
that Al Gore’s Vice Presidency was contained within
Bill Clinton’s Presidency, even though we don’t exactly
know the time span of either fact. The Containment
temporal constraint can be used to achieve this. If
the timespan of fact u ∈ Sa is contained within the
time span of fact v ∈ Sc, then we the Containment
constraint is of the form:

xa,u,t ≤ xc,v,t, ∀t ∈ {B . . . E}

We can verify that this constraint will be violated only
when xa,u,t = 1 and xc,v,t = 0, the only undesirable
case. Containment can be both Intra Relation as well
as Cross Relation.

• Succession: This constraint is useful when we want
to express the requirement that one fact (v ∈ Sc) from
relation c happened after another fact (u ∈ Sa) from
relation a, e.g., Ronald Reagan became president after
Henry Kissinger was the Secretary of State.∑

t t ∗ z
e
a,u,t −

∑
t t ∗ z

b
c,v,t ≤ 0

Please note that the above constraint is effective only
in conjunction with SingleSpan constraint.

• Mutex: Suppose, we want to enforce the requirement
that George H. W. Bush can’t be US President and
Vice President at the same time. This can be achieved
through the Mutex constraint. This constraint en-
sures that two facts, u ∈ Sa and v ∈ Sc, are not true
at the same time.

xa,u,t + xc,v,t ≤ 1, ∀t ∈ {B . . . E}

Mutex can be both Intra (a = c) as well as Cross
Relational (a 6= c).

Please note that choice of constraints finally used in any
given inference is dependent on the type of relation(s) in-
volved. Moreover, the temporal constraints presented above
are not meant to be exhaustive, as depending on the domain
and type of relation(s), new constrains may have to intro-
duced. We hope that CoTS’ linear constraint specification
is flexible enough to support a majority of such extensions.

3.2.2 Objective
Subject to the constraints mentioned above, CoTS opti-

mizes the following objective,

max
{xr,s,t}

∑
r,s,t

pr(+1|s, t) ∗ xr,s,t + λ ∗ pr(−1|s, t) ∗ (1− xr,s,t)

where λ ∈ [0, 1] is the tradeoff weight which controls the rel-
ative importance of the two terms in the objective. The first



term in the objective encourages the optimization to respect
the classification scores pr(+1|s, t); while the second term
encourages the inference to abstain from over-predicting in
case the local MaxEnt classifier is not confident enough.
This become more apparent after the following analysis.

pr(+1|s, t) ∗ xr,s,t + λ ∗ pr(−1|s, t) ∗ (1− xr,s,t)
= pr(+1|s, t) ∗ xr,s,t + λ ∗ (1− pr(+1|s, t) ∗ (1− xr,s,t)
= ((1 + λ) ∗ pr(+1|s, t)− λ) ∗ xr,s,t + λ ∗ (1− pr(+1|s, t))
= ((1 + λ) ∗ pr(+1|s, t)− λ) ∗ xr,s,t + Constant

The optimization can ignore the second constant term as
it is not dependent on xr,s,t. Since the objective is one
of maximization sense, there is incentive to set xr,s,t = 1
(subject to constraint satisfaction) iff

(1 + λ) ∗ pr(+1|s, t)− λ > 0

pr(+1|s, t) >
λ

1 + λ

With λ = 1, we observe that xr,s,t = 1 is a candidate for
prediction if pr(+1|s, t) > 0.5, i.e., pr(+1|s, t) > pr(−1|s, t).
By varying λ, we can control how much confidence collective
inference rests on the local classification scores. It is inter-
esting to note that all these fall out naturally from the for-
mulation of the objective. This built-in mechanism against
over-prediction is a desirable property of CoTS, which is
lacking in the other systems we compare against, and as we
shall see in Section 4, it results in better temporal scoping.

4. EXPERIMENTS
In this section, we investigate the following:

• Does adding gradient-based features in the local classi-
fier lead to improved temporal scoping? (Section 4.2)

• Does coupled temporal scoping (i.e., joint inference in-
volving multiple instances from same as well different
relations) help improve performance? (Section 4.3)

• What are the effects of different types of constraints
on CoTS’s performance? (Section 4.4)

• Is CoTS’s Collective inference module fast enough?
(Section 4.5)

4.1 Experimental Setup

4.1.1 Relations and Facts
Relation names and the number of facts from these re-

lations which were used in the experiments in this section
are presented in Table 1. Please note that CoTS assumes
that these facts have already been extracted, and it in-
stead focuses only on temporally scoping them. Facts from
the US Administration domain (i.e., facts from the rela-
tions US President, US Vice President, and US Secretary
of State) were temporally scoped together, while facts from
the Academy Awards domain (i.e., Best Director and Best
Movie) were scoped jointly. True temporal scope of each
fact was determined manually, which in turn was used for
training and evaluation purposes. Facts from the US Ad-
ministration domain spanned the period 1961 - 2008, while
facts from the Academy Awards domain spanned the period
1995 - 2008.

Relation Name Number of Facts
US President 9

US Vice President 12
US Secretary of State 27

Best Director 14
Best Movie 14

Table 1: Relations and the number of facts from
these relations used in the experiments in Section 4.

4.1.2 Query Module
Queries: As described in Section 2, in order to get the

temporal profile of a fact (see Figure 2), we first construct
a query to represent the fact. In the following description,
we shall use the notation {q} to denote a query, whose key-
words and operators are stored in q as per Lucene’s query
syntax [11]. For the three US Administration office relations
in Table 1, we use the query template: Office LastName.
So, the fact Bill Clinton-presidentOf-US is represented by
the query {”president clinton”}. Similarly, {”vice president
gore”}, and {”secretary albright”}. For the Academy Awards
Best Movie relation, we used the query template {”academy
award” AND movieName}, which resulted in queries of the
form {”academy award” AND ”a beautiful mind”}. The
goal behind using this query is to retrieve documents con-
taining both phrases: ”academy award” and ”a beautiful
mind”. Similarly, for the Academy Award Best Directory
relation, the query template {”academy award” AND direc-
torLastName} was used, which resulted in queries of the
form {”academy award” AND ”spielberg”}.

Time-Stamped Corpus: Once a query is generated
from a fact as described above, we construct a temporal pro-
file of the fact from the document creation times (DCTs) of
documents retrieved by its query. In order to retrieve such
documents for a given query, we use Lucene [11] to index
time-stamped documents and look the query up against that
index. We use the following two sources of time-stamped
documents:

• Google Books Ngram2 [15] is a corpus of about 5
million digitized books. The resulting corpus contains
over 500 billion words in several languages. The data
is released in the form of n-gram (n = 1 to 5) and three
different counts of each of these n-grams are available
per year: (1) the number of times the n-gram is found
in books published in the year; (2) the number of pages
that contain the n-gram in books published in the year;
and (3) the number of books published in the year that
contain the n-gram. An interesting feature of this data
set is its extended time coverage spanning from 1500s
to 2008.

• Gigaword3 [12] contains English newswire text data
acquired from four international newswire services, span-
ning the period from 1994 to 2008. Unlike Google
Books Ngrams, Gigaword contains full time-stamped
newswire documents and not just ngrams extracted
from them. However, compared to the Google Books
Ngrams dataset, it is much smaller in size and has
smaller time coverage.

2http://books.google.com/ngrams/datasets
3LDC Gigaword: http://bit.ly/vZFoJ6



Figure 4: Precision-Recall plot for temporal scoping of
US President, Vice President and Secretary of State
relations. CoTS is the system proposed in this paper.
(see Section 4.3)

Figure 5: Precision-Recall plot for temporal scoping of
Academy Award Best Director and Best Picture rela-
tions. CoTS is the system proposed in this paper. (see
Section 4.3)

In case of Google Books Ngram dataset, each (unique)
ngram is considered a document. Per year data from these
two datasets are (separately) indexed using Lucene as men-
tioned above. For Google Books Ngrams dataset, we index
only the English 5-grams published during the period 1960 -
2008. We consider 5-grams as they can accommodate longer
queries. We use the Google Books Ngram dataset for the
three US Administration relations in Table 1, as temporal
scope of facts from these three relations span 1961 - 2008,
which is beyond the temporal coverage of Gigaword (1994 -
2008). We use the Gigaword corpus for the two Academy
Awards relations in Table 1, as the combined temporal span
of facts from these two relations (as considered in this sec-
tion) are aligned with that of Gigaword.

4.1.3 Training Local Classifier
Once the temporal profiles of facts are generated as de-

scribed above, we next train a relation-specific local classi-
fier by deriving features from these temporal profiles (Sec-
tion 3.1). For each relation experimented with in this pa-
per (Table 1), we use a single temporally scoped fact from
this relation to generate all training data needed to train the
corresponding relation-specific local classifier (MaxEnt, see
Section 3.1). For example, for the US President relation, we
derive training data from the temporally scoped fact: Presi-
dent Kennedy (1961 - 1963). In this case, all instances in the
span [1961,1963] correspond to positive instances (y = +1),
while everything outside this range correspond to negative
instances (y = +1). Please note that all the classifiers in
these experiments are trained from such limited amount of
training data, demonstrating the real-world applicability of
CoTS, the proposed method.

4.1.4 Metrics
As mentioned in Section 4.1.1, true temporal scopes of

all facts in Table 1 were determined by a human annotator.
Prediction from CoTS (or any of the baselines) that a fact is
true at a given time is matched against this gold-standard to
determine prediction correctness. Based on this, Precision
(P), Recall (R), and F1 ( 2∗P∗R

(P+R)
) are computed, which are

used as the final evaluation metrics. Also, all evaluations are

performed at the year level, as that is the finest granularity
common to the two time-stamped datasets (Section 4.1.2).

In order to generate different Precision-Recall plots, we
vary the λ parameter over the local classifier’s scores, as
described in Section 3.2.2.

4.2 Effect of Gradient Feature

Relations
F1 F1

(No Gradient) (With Gradient)

President, V. President,
42.8 63.63

Sec. of State
Best Director,

4.26 60.47
Best Picture

Table 2: Effect of using gradient information dur-
ing temporal scoping of different relations from two
domains.

In this section, we evaluate the effect of gradient-based
features in the local classifier (Section 3.1) can have on col-
lective inference. We use the full CoTS with and without
gradient features in the local classifier, and apply it on re-
lations from two domains. F1 results are presented in Ta-
ble 2. We observe that gradient features can significantly
improve temporal scoping performance. This validates our
motivation behind using gradient-based features in the local
classifier, as it can help get rid of the publication lag issues
in the books data and for certain domains in the newswire.

Based on these results, in all subsequent experiments, we
include gradient-based features in CoTS’s local classifier.

4.3 Effect of Coupling Constraints
In this section, we evaluate the effect of Cross Relational

coupling constraints on temporal scoping. We compare the
performance of CoTS against other systems exploiting either
no constraint (MaxEnt, the local classifier in Section 3.1),
or a subset of constraints (Intra Relation, Section 3.2.1)
but without any cross relation coupling constraints. Exam-
ples of a few manually-specified coupling constraints used
by CoTS for these experiments are presented in Table 3.



President, Vice President, Secretary of State

Fact
Temporal

Fact
Constraint

President Clinton Containment Vice President Gore
President Reagan Containment Vice President Bush
President Reagan Succession Secretary Kissinger

Best Director, Best Picture
Director Cameron Aligned Titanic
Director Howard Aligned A Beautiful Mind

Table 3: Examples of coupling constraints used
by CoTS for the experiments in Section 4.3. For
brevity, we represent the facts by the queries used
to compute their counts from the timestamped
datasets (Section 4.1.2).

The Precision-Recall plots for these comparisons over facts
from the two sets of relations in Table 1 are reported in
Figure 4 and Figure 5, respectively. From these plots, we
observe that CoTS, which exploits cross relational coupling
constraints, significantly outperforms other baselines which
either don’t use any constraint (MaxEnt), or use only a
subset of constraints exploited by CoTS.

4.4 Constraint Ablation Study

Figure 6: Constraint ablation results for temporal
scoping over US President, Vice President and Sec-
retary of State relations.

In this section, we report results from constraint ablation
studies involving CoTS. The goal is to study the effect of
different constraint types on CoTS’s performance. Results
from two different sets of relations are reported in Figure 6
and Figure 7. For the politics domain (President, Vice Pres-
ident, Sec. of State), we use the SingleSpan constraint as
facts in that domain tend to be true for a contiguous sin-
gle span (e.g., presidency usually lasts multiple consecutive
years, and one is president for a single span). This is in
contrast to the temporal spans of the two relations in the
movies domain whose spans are usually a unit length, and
where one could win the same award multiple times in one’s
lifetime, and hence the choice of the Point constraint.

From the results in Figure 6 and Figure 7, we observe
that CoTS’s performance improves as more prior knowledge
is injected through additional coupling constraints. This

Figure 7: Constraint ablation results for temporal
scoping over Academy Award winner Best Director
and Best Picture relations.

justifies our design choice of using coupled (joint) inference
for more accurate temporal scoping.

4.5 Running time of ILP
For all the problems in our experiments, CoTS’s collec-

tive inference took on average 0.25 sec, with inference over
the largest problem involving 2334 variables and 3804 con-
straints taking only 2.6 sec. This demonstrates the practi-
cality of CoTS’s inference scheme.

5. RELATED WORK
Even though time is an important dimension in any in-

formation space, and knowledge of temporal scopes of facts
can be useful for better information retrieval systems, and
user experience [2], temporal scoping of knowledge base facts
is an area that is still largely unexplored. Only recently, a
few research papers have started to address this problem
[13, 27, 26]. Otherwise, most previous work on temporal in-
formation extraction has been focused largely on temporal
representations [17], temporal relation identification [6, 14,
5, 16], and ensuring temporal consistency between extracted
temporal relations [8, 29, 13]. We shall review some of the
more recently proposed (and more relevant) approaches first,
and then compare CoTS against the other previous work on
temporal relation identification.

Timely YAGO [27] is similar in spirit to CoTS in that
its objective is also temporal grounding of facts. As in
CoTS, a fact in Timely YAGO refers to an instance of a bi-
nary relation between entities (entity-relation-entity triplet).
Facts and their temporal information in Timely YAGO are
extracted from semi-structured text in the infoboxes and
category information in Wikipedia using regular expression
matching. In contrast, CoTS is applicable more widely and
is not limited to Wikipedia texts alone. Moreover, instead
of using any regular expression based extractors, CoTS ag-
gregates document-level metadata (viz., document creation
time) based evidences to temporally scope multiple tempo-
rally related facts at the same time.

A method to temporally scope facts and reason over such
scoped facts is presented in [25]. Given a target fact, the
method in [25] attempts to gather count-based evidence for
the begin, active and end time of this fact. These possi-



bly inconsistent evidences are then aggregated using a set
of heuristics to determine the final interval over which the
target fact is likely to be true. Instead of temporally scop-
ing each fact in isolation as in [25], CoTS performs joint
inference to temporally scope multiple facts at the same
time while exploiting temporal dependencies among those
facts, resulting in more accurate temporal scoping as demon-
strated through the experiments in this paper.

The Temporal Information Extraction (TIE) system [13]
attempts to output a maximal set of events and their tempo-
ral relations as directly implied in a given sentence. TIE uses
joint transitivity inference to bind the start and end times
for each event. As in TIE, and instead of Allen-style inter-
vals [1], CoTS uses a real-valued point-based temporal repre-
sentation. While TIE is a micro-reading system which pro-
cesses a single (or a set of) sentences at once, CoTS works at
the macro-reading level, aggregating evidences from a large
number of documents to temporally scope a set of facts.

PRAVDA is a recently proposed method to harvest tem-
poral facts from free text [26]. PRAVDA uses textual pat-
terns to generate candidate temporal facts, which are then
re-ranked using a graph-based label propagation algorithm
adapted from a recently proposed graph transduction algo-
rithm [22]. PRAVDA is probably the prior work which is
closest in spirit to CoTS. However, unlike PRAVDA, CoTS
exploits temporal dependencies among facts to scope them
jointly, a strategy that we have found to be quite effective
as demonstrated in Section 4.

We note that Timely Yago [27], TIE [13], and PRAVDA
[26] are complimentary to CoTS, as extractions from these
three systems can be used as additional evidence (features)
in CoTS’s local classifier, with potential for more accurate
temporal scoping.

Learning and inference in CoTS is similar in spirit to the
CCM framework [9, 20]. However, unlike existing CCM
models, CoTS uses additional variables to define more ex-
pressive constraints, and applies them to the novel problem
of temporally scoping relation facts, which is beyond the
scope of current CCM-based models. Similar to CoTS, the
SCAD system [3] also uses ILP to improve on the predic-
tions from a weakly-supervised local classifier. However, the
two systems address very different problems with completely
different motivations.

Previous works on temporal relation identification have
been largely spurred by the release of TimeML [17], a no-
table markup language for events and temporal expressions
in natural language, the availability of tools such as TARSQI
[24] to automatically annotate events and times in TimeML,
and the release of TimeBank [18], a TimeML annotated cor-
pora for training and testing. The TimeBank corpus consists
of 186 news articles that are annotated for events, time ex-
pressions and temporal relations between events and times.
Most previous work on temporal relation identification is
based on the TimeBank corpus [6, 14, 8]. These approaches
build temporal relation classifier over the corpus relations
and making either local pairwise decisions of temporal re-
lations between events [6, 14], or jointly informed decision
to impose transitivity constraints (A before B and B before
C implies A before C) between locally discovered tempo-
ral relations [8]. Aside from transitivity constraint, tempo-
ral expression normalization (e.g., ”last year” is before ”last
month”) are also used to discover implicit time-time relation

in the document to enrich temporal network between events
and times in TimeBank.

Other works on temporal relation identification [5, 16, 29]
have been conducted for the tasks of TempEval Challenge
[23]. TempEval challenge uses training and test sets encoded
in a subset of TimeML, and is divided into three subtasks:
to identify temporal relations 1) between a specific event and
a time expression in the same sentence, 2) between a spe-
cific event and the Document Creation Time (DCT), and
3) between the provided main events in two adjacent sen-
tences. The event is specified per sentence by the main verb
in the sentence. Some approaches use relation classification
on each subtask independently by using either a pure ma-
chine learning approach [5], or a combination of rule based
and machine learning [16]. Another approach attempts to
solve the three subtasks jointly [29] by learning a single prob-
abilistic model for all three tasks, incorporating formulas of
temporal transitivity that should hold across tasks.

Please note that there are fundamental differences be-
tween these temporal relation identification approaches and
CoTS. Firstly, an event in these approaches is usually a
tensed verb, which is different from the notion of relational
facts in CoTS. Moreover, unlike these previous approaches,
CoTS attempts to temporally ground facts on the timeline,
and not just infer temporal dependencies among events (and
time). However, these approaches could be complimentary
to CoTS in the sense that the temporal relations inferred
by these approaches could potentially be used as additional
constraints in CoTS’s collective inference engine.

6. CONCLUSION
Despite the benefits of temporally scoped facts in knowl-

edge bases, temporal scoping of facts is a research area that
has been largely unexplored, with the exception of a few re-
cent proposals [27, 26]. In this paper we propose CoTS (Cou-
pled Temporal Scoping), a novel way of temporally scoping
facts by exploiting a variety of signals: counts of mentions
of the fact in large open domain data sources such as Google
Books Ngram corpus and Gigaword Corpus; and by exploit-
ing temporal relationships between the fact and other facts
from the same or different relations.

CoTS poses the task of temporal scoping as a change de-
tection in the temporal profile of the fact. To aggregate
redundant observed cues (e.g., gradients and counts from
the temporal profile) for a fact, CoTS uses Integer Linear
Program (ILP) to jointly infer the time scopes of multiple
temporally related facts while respecting any temporal con-
straints among them. CoTS is a weakly supervised system
in that it only needs a few labeled examples per relation to
make decision on the temporal scope of facts.

There are several avenues for improving CoTS, and over-
coming fact count sparseness is one of them. Some queries
such as those related to the ’defenseSecretaryOf’ relation re-
turn very few results in both Google Books and Gigaword
datasets. Although temporal scope of sparse facts can be
inferred from the temporal scope of other related facts via
coupling, sparsity of counts may still hamper temporal scop-
ing of facts that have little or no other correlated facts. To
overcome this problem, we are planning to (1) derive counts
from a larger number of time-stamped sources; and (2) use
semi-supervised learning algorithms to gather fact counts
even from non time-stamped documents.

Furthermore, in the current CoTS system, temporal con-



straints among facts are specified manually based on users’
prior knowledge. In the future, we would like to automati-
cally acquire such relation and fact specific constraints, for
example, by learning temporal relationships among facts in
a semi-supervised fashion, such as in NELL [7].
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