Toward Never-Ending Learning of Semantic Knowledge

Justin Betteridge, Andrew Carlson, Estevam R. Hruschka Jr., Tom M. Mitchell

(with help from Sue Ann Hong, Sophie Wang, Richard Wang)

Carnegie Mellon University

March 2009

Our Goal: Never-Ending Language Learning

Goal:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate and extend initial ontology
 - 2. learn to read better than yesterday

Our Goal: Never-Ending Language Learning

Goal:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate initial ontology
 - 2. learn to read better than yesterday

Today...

Given:

- initial ontology defining dozens of classes and relations
- 10-20 seed examples of each

Task:

- learn to extract / extract to learn
- running over 200M web pages, for a few days

Browse the KB

- ~ 18,000+ entities, ~ 30,000 extracted beliefs
- learned from 10-20 seed examples, 200M unlabeled web pages
- ~ 2 days computation on M45 cluster (thanks Yahoo!)

Initial ontology: <u>Initial ontology</u> learned KB: <u>learned KB</u>

or get it from the web:

http://rtw.ml.cmu.edu/kb/RTW_KB_2009_03_19_ORS/

The Problem with Semi-Supervised Bootstrap Learning

it's underconstrained!!

Paris Pittsburgh Seattle Cupertino San Francisco Austin denial

mayor of arg1 live in arg1

arg1 is home of traits such as arg1

The Key to Accurate Semi-Supervised Learning

hard (underconstrained) semi-supervised learning problem **much easier** (more constrained) semi-supervised learning problem

Constraining semi-supervised learning 1 Wish to learn f : X \rightarrow Y e.g., city : NounPhraseInSentence \rightarrow {0,1}

Constraint type 1 (co-training):

if X can be split into redundantly sufficient X1, X2 then learn both f1: X1 \rightarrow Y, and f2: X2 \rightarrow Y

Constraining semi-supervised learning 2 Wish to learn f: $X \rightarrow Y$ e.g., city: NounPhraseInSentence $\rightarrow \{0,1\}$

Constraint type 2: couple training of multiple classes Ontology provides coupling constraints

Constraining semi-supervised learning 2 Wish to learn f: $X \rightarrow Y$ e.g., city: NounPhraseInSentence \rightarrow {0,1}

Constraint type 2: couple training of multiple classes Ontology provides coupling constraints

Constraining semi-supervised learning 3

Constraint type 3 (couple training of classes and relations)

Coupled Bootstrap Learner algorithm

Algorithm 1: CBL Algorithm

Input: An ontology O, and text corpus C**Output**: Trusted instances/patterns for each predicate

SHARE initial instances/patterns among predicates;

for $i = 1, 2, ..., \infty$ do

foreach *predicate* $p \in \mathcal{O}$ **do**

EXTRACT new candidate

instances/patterns;

FILTER candidates;

TRAIN instance/pattern classifiers;

Assess candidates using trained

classifiers;

PROMOTE highest-confidence candidates; end

SHARE promoted items among predicates;

end

In the **ontology**: categories, relations, seed instances and natterns. type information, xtnaction usion and subset xclusion, subset relations, $Q (MAtg) 2 \rightarrow (CBC \parallel$ Blisson Lossify candidate instances **te**pareneisal tada hartehsplorakee Corp noachtuartei with each pattern

Score patterns with estimate

learned extraction patterns: Company

retailers_like____such_clients_as___an_operating_business_of___being_acquired_by___ firms such as a flight attendant for chains such as industry_leaders_such_as___ advertisers_like___ social_networking_sites_such_as___ a senior manager at competitors like stores like is an ebay company discounters like a distribution deal with popular sites like a company such as _____vendors_such_as___ rivals_such_as___ competitors_such_as___ has been quoted in the providers such as company research for providers like giants such as a social network like popular websites like multinationals_like____social_networks_such_as___ the_former_ceo_of___ a software engineer at a store like video sites like a_social_networking_site_like___ giants_like___ a_company_like___ premieres_on___ corporations_such_as___ corporations_like___ professional_profile_on___ outlets_like___ the_executives_at___stores_such_as____is_the_only_carrier a_big_company_like___ social media sites such as has an article today manufacturers such as companies_like____social_media_sites_like___ companies including firms like networking_websites_such_as___ networks_like___ carriers_like___ social networking websites like an executive at insured via provides dialup access a patent infringement lawsuit against social networking sites like social network sites like carriers such as are shipped via social sites like a licensing deal with portals like vendors_like____the_accounting_firm_of___ industry_leaders_like___ retailers_such_as___ chains like prior fiscal years for such firms as provided free by manufacturers like airlines like airlines such as

learned extraction patterns: playsSport(arg1,arg2)

arg1 was playing arg2 arg2 megastar arg1 arg2 icons arg1 arg2 player named arg1 arg2 prodigy arg1 arg1 is the tiger woods of arg2 arg2 career of arg1 arg2 greats as arg1 arg1 plays arg2 arg2 player is arg1 arg2 legends arg1 arg1 announced his retirement from arg2 arg2 operations chief arg1 arg2 player like arg1 arg2 and golfing personalities including arg1 arg2_players_like_arg1 arg2_greats_like_arg1 arg2_players_are steffi graf and arg1 arg2 great arg1 arg2 champ arg1 arg2 greats such as arg1 arg2 professionals such as arg1 arg2 course designed by arg1 arg2 hit by arg1 arg2_course_architects_including_arg1 arg2_greats_arg1 arg2_icon_arg1 arg2 stars like arg1 arg2 pros like arg1 arg1 retires from arg2 arg2 phenom arg1 arg2 lesson from arg1 arg2 architects robert trent jones and arg1 arg2 sensation arg1 arg2 architects like arg1 arg2 pros arg1 arg2_stars_venus_and_arg1 arg2_legends arnold palmer and arg1 arg2 hall of famer arg1 arg2 racket in arg1 arg2 superstar arg1 arg2 legend arg1 arg2 legends such as arg1 arg2 players is arg1 arg2 pro arg1 arg2_player_was_arg1_arg2_god_arg1_arg2_idol_arg1_arg1_was_born_to_play_arg2 arg2_star_arg1 arg2_hero_arg1 arg2_course_architect arg1 arg2 players are arg1 arg1 retired from professional arg2 arg2 legends as arg1 arg2 autographed by arg1 arg2_related_quotations_spoken_by_arg1 arg2_courses_were_designed_by_arg1 arg2 player since arg1 arg2 match between arg1 arg2 course was designed by arg1 arg1 has retired from arg2 arg2 player arg1 arg1 can hit a arg2 arg2 legends including arg1 arg2 player than arg1 arg2 legends like arg1 arg2 courses designed by legends arg1 arg2_player_of_all_time_is_arg1 arg2_fan_knows_arg1 arg1_learned_to_play_arg2 arg1 is the best player in arg2 arg2 signed by arg1 arg2 champion arg1

Experimental Evaluation

- 31 predicates
 - 15 relations, 16 categories
- Domains:
 - Companies
 - Sports
- Run for 15 iterations:
 - Full system
 - No Sharing of promoted items
 - No Relation/Category coupling
- Evaluated a sample of promoted items

	5	5 iterations 10 iterations		ons	15 iterations				
Predicate	Full	NS	NCR	Full	NS	NCR	Full	NS	NCR
Actor	93	100	100	93	97	100	100	97	100
Athlete	100	100	100	100	93	100	100	73	100
Board Game	93	76	93	89	27	93	89	30	93
City	100	100	100	100	97	100	100	100	100
Coach	100	63	73	97	53	43	97	47	47
Company	100	100	100	97	90	97	100	90	100
Country	60	40	60	30	43	27	40	23	40
Economic Sector	77	63	73	57	67	67	50	63	40
Hobby	67	63	67	40	40	57	20	23	30
Person	97	97	90	97	93	97	93	97	93
Politician	93	93	97	73	53	90	90	53	87
Product	97	87	90	90	87	100	97	90	77
Product Type	93	93	90	70	73	97	77	80	67
Scientist	100	90	97	97	63	97	93	60	100
Sport	100	90	100	93	67	83	97	27	90
Sports Team	100	97	100	97	70	100	90	50	100
Category Average	92	84	89	82	70	84	83	63	79
Acquired(Company, Company)	77	77	80	67	80	47	70	63	47
CeoOf(Person, Company)	97	87	100	90	87	97	90	80	83
CoachesTeam(Coach, Sports Team)	100	100	100	100	100	97	100	100	90
CompetesIn(Company, Econ. Sector)	97	97	80	100	93	67	97	63	60
CompetesWith(Company, Company)	93	80	60	77	70	37	70	60	43
HasOfficesIn(Company, City)	97	93	40	93	90	27	93	57	30
HasOperationsIn(Company, Country)	100	95	50	100	97	40	90	83	13
HeadquarteredIn(Company, City)	77	90	20	70	77	27	70	60	7
LocatedIn(City, Country)	90	67	57	63	50	43	73	50	30
PlaysFor(Athlete, Sports Team)	100	100	0	100	97	7	100	43	0
PlaysSport(Athlete, Sport)	100	100	27	93	80	10	100	40	30
TeamPlaysSport(Sports Team, Sport)	100	100	77	100	97	80	93	83	67
Produces(Company, Product)	91	83	90	83	93	67	93	80	57
HasType(Product, Product Type)	73	63	17	33	67	33	40	57	27
Relation Average	92	88	57	84	84	48	84	66	42
All	92	86	74	83	76	68	84	64	62

Table 1: Precision (%) for each predicate. Results are presented after 5, 10, and 15 iterations, for the Full, No Sharing (NS), and No Category/Relation Coupling (NCR) configurations of CBL .

Extending Freebase

	Freebase	CBL	Est.	Est. New
Category	Matches	Instances	Prec.	Instances
Actor	465	522	100	57
Athlete	54	117	100	63
Board Game	6	18	89	10
City	1665	1799	100	134
Company	995	1937	100	942
Econ. Sector	137	1541	50	634
Politician	74	962	90	792
Product	0	1259	97	1221
Sports Team	139	414	90	234
Sport	134	613	97	461

Table 3: Estimated numbers of 'New Instances', which are correct instances promoted by CBL in the Full 15 iteration run which do not have a match in Freebase, and the values used in calculating them (number of Freebase/CBL matches, number of CBL instances, and the estimated precision of CBL for the predicate).

If the key to accurate self-supervised learning is coupling the training of many functions,

then how can we create even more coupling?

1. incorporate additional learners whose errors will be independent of current learners (e.g., based on HTML)

SEAL Set Expander for Any Language

*Richard C. Wang and William W. Cohen: Language-Independent Set Expansion of Named Entities using the Web. In *Proceedings of IEEE International Conference on Data Mining* (ICDM 2007), Omaha, NE, USA. 2007.

SEAL

For each class being learned,

On each iteration of CBL

Train SEAL on examples extracted by CBL, then apply

Allow SEAL to suggest additional examples

Experiment:

15 classes, ~15000 examples extracted by CBL result: ~5000 examples suggested by SEAL (includes duplicates)

Typical learned company extractor: at http://www.transnationale.org/countries/panp.php pattern: ", " extracts: banco brasil

If the key to accurate self-supervised learning is coupling the training of many functions,

then how can we create even more coupling?

 allow learner to discover new coupling constraints (by datamining the extracted beliefs)

Learned Probabilistic Horn Clause Rules

- 40 learned rules for teamPlaySport, playSport,
- when applied, inferred 124 new beliefs
 - e.g., teamPlaysSport(Caps,hockey),
 - playSport(JasonGiambi,baseball)

0.84 playsSport(?x,?y) ← playsFor(?x,?z), teamPlaysSport(?z,?y) 0.70 playsSport(?x,baseball) ← playsFor(?x,cubs)

0.81 teamPlaysSport(?x,?y) ← playsForTeam(?x,?z), playsSport(?z,?y)
0.70 teamPlaysSport(?x,basketball) ← playsAgainst(?x,pistons)
0.64 teamPlaysSport(?x,?y) ← playsAgainst(?x ?z), teamPlaysSport(?z,?y)

Learned Probabilistic Horn Clause Rules

0.81 teamPlaysSport(?x,?y) ← playsForTeam(?x,?z), playSport(?z,?y)

Summary

For never-ending language learning, the key is achieving accurate semi-supervised training

- → Constrain learning by coupling the training of many types of knowledge (functions)
 - sample complexity <u>decreases</u> as ontology size increases
- → Want an architecture in which current learning makes future learning even more accurate
 - -- learn symbolic rules which become new probabilistic constraints

 \rightarrow Want architecture where self-consistency \approx correctness