
How Will We Populate the Semantic Web
on a Vast Scale?

Tom M. Mitchell

 Weam AbuZaki, Justin Betteridge, Andrew Carlson,
Estevam R. Hruschka Jr., Bryan Kisiel, Burr Settles, Richard Wang

Machine Learning Department
Carnegie Mellon University

October 2009

see: http://rtw.ml.cmu.edu/readtheweb.html

How will we populate the Semantic Web?

1.  Humans will enter structured information

2.  Database owners will decide to publish theirs

3.  Computers will read unstructured web data

this talk

Read the Web: Problem Specification
Inputs:
•  initial ontology
•  handful of examples of each predicate in ontology
•  the web
•  occasional access to human trainer

The task:
•  run 24x7, forever
•  each day:

1.  extract more facts from the web to populate the initial
ontology

2.  learn to read (perform #1) better than yesterday

But Natural Language Understanding is Hard!

How to make machine reading more plausible

•  Leverage redundancy on the web

•  Target reading to populate a given ontology

•  Use new coupled semi-supervised learning
algorithms

•  Seed learning using Freebase, DBpedia, …

Read the Web project

Goal:
•  run 24x7, forever
•  each day:

1.  extract more facts from the web to populate initial ontology
2.  learn to read better than yesterday

Today…

Given:
•  input ontology defining 102 classes and relations
•  10-20 seed examples of each

Task:
•  learn to extract / extract to learn
•  running over 200M web pages, for a week

Result:
•  KB with 104-105 extracted triples

Browse the KB

•  ~ 20,000 entities, ~ 40,000 extracted beliefs
•  learned from 10-20 seed examples per predicate,

200M unlabeled web pages
•  ~ 5 days computation

Initial ontology: Initial ontology

After days of self-supervised learning: populated KB

1. Coupled semi-supervised learning of
 category and relation extractors

Semi-Supervised Bootstrap Learning

Paris
Pittsburgh
Seattle
Cupertino

mayor of arg1
live in arg1

San Francisco
Austin
denial

arg1 is home of
traits such as arg1

it’s underconstrained!!

anxiety
selfishness
Berlin

Extract cities:

NP1 NP2

Krzyzewski coaches the Blue Devils.

athlete
team

coachesTeam(c,t)

person

coach

sport

playsForTeam(a,t)

NP

Krzyzewski coaches the Blue Devils.

coach(NP)

 hard (underconstrained)
semi-supervised learning

problem

much easier (more constrained)
semi-supervised learning problem

teamPlaysSport(t,s)

playsSport(a,s)

The Key to Accurate Semi-Supervised Learning

NP1 NP2

Krzyzewski coaches the Blue Devils.

athlete
team

coachesTeam(c,t)

person

coach

sport

playsForTeam(a,t)

NP

Krzyzewski coaches the Blue Devils.

coach(NP)

 hard (underconstrained)
semi-supervised learning

problem

much easier (more constrained)
semi-supervised learning problem

teamPlaysSport(t,s)

playsSport(a,s)

The Key to Accurate Semi-Supervised Learning

Key idea: Couple the training of many functions to make unlabeled data
more informative.

Coupled training type 1 (co-training)
Wish to learn f : X Y

 e.g., city : NounPhrase {0,1}

Luke is mayor of Pittsburgh.

X1 X2

city? city? =

X:

Learn 2 functions with different input features
 f1: X1 Y, and f2: X2 Y

Coupling: force their outputs to agree over unlabeled examples

Coupled training type 2
Wish to learn f1: X Y1, f2: X Y2,
such that: (x) g(f1(x), f2(x))
e.g.
 location: NounPhrase {0,1}
 politician: NounPhrase {0,1}
 g(y1,y2) = not (and(y1,y2))

Luke is mayor of Pittsburgh.

X2

city?
politician?

location?

Α

Coupled training type 3

Constraint type 3 (argument type consistency)
 mayorOf: NP1 x NP2 {0,1}
 city: NP1 {0,1}
 politician: NP2 {0,1}

Luke is mayor of Pittsburgh.

X2

city?
politician?

location?

X1

city?
politician?

location?

mayorOf(X1,X2)?

Coupled Bootstrap Learner algorithm

In the ontology: categories,
relations, seed instances and
patterns, type information, mutual
exclusion and subset relations Sharing enforces mutual
exclusion, subset relations, and
type checking
Extraction (M45):

Arg1 HQ in Arg2 (CBC ||
Toronto), (Adobe || San Jose), …

Micron || Boise arg2 is
headquarters for chipmaker arg1,
arg1 of arg2, arg1 Corp
headquarters in arg2, …

Filtering (M45):
CBC || Toronto Not enough
evidence

arg1 of arg2 too general
arg2 is headquarters for
chipmaker arg1 too specific

Assessment (M45):

Classify candidate instances with
a Naïve Bayes classifier

Features related to strength of
occurrence with each pattern

Score patterns with estimate of
precision

Promote top ranked instances
and patterns. Use type-checking.

learned extraction patterns: Company
 retailers_like__ such_clients_as__ an_operating_business_of__ being_acquired_by__

firms_such_as__ a_flight_attendant_for__ chains_such_as__ industry_leaders_such_as__
advertisers_like__ social_networking_sites_such_as__ a_senior_manager_at__
competitors_like__ stores_like__ __is_an_ebay_company discounters_like__
a_distribution_deal_with__ popular_sites_like__ a_company_such_as__ vendors_such_as__
rivals_such_as__ competitors_such_as__ has_been_quoted_in_the__ providers_such_as__
company_research_for__ providers_like__ giants_such_as__ a_social_network_like__
popular_websites_like__ multinationals_like__ social_networks_such_as__
the_former_ceo_of__ a_software_engineer_at__ a_store_like__ video_sites_like__
a_social_networking_site_like__ giants_like__ a_company_like__ premieres_on__
corporations_such_as__ corporations_like__ professional_profile_on__ outlets_like__
the_executives_at__ stores_such_as__ __is_the_only_carrier a_big_company_like__
social_media_sites_such_as__ __has_an_article_today manufacturers_such_as__
companies_like__ social_media_sites_like__ companies___including__ firms_like__
networking_websites_such_as__ networks_like__ carriers_like__
social_networking_websites_like__ an_executive_at__ insured_via__
__provides_dialup_access a_patent_infringement_lawsuit_against__
social_networking_sites_like__ social_network_sites_like__ carriers_such_as__
are_shipped_via__ social_sites_like__ a_licensing_deal_with__ portals_like__
vendors_like__ the_accounting_firm_of__ industry_leaders_like__ retailers_such_as__
chains_like__ prior_fiscal_years_for__ such_firms_as__ provided_free_by__
manufacturers_like__ airlines_like__ airlines_such_as__

learned extraction patterns: playsSport(arg1,arg2)

arg1_was_playing_arg2 arg2_megastar_arg1 arg2_icons_arg1 arg2_player_named_arg1
arg2_prodigy_arg1 arg1_is_the_tiger_woods_of_arg2 arg2_career_of_arg1
arg2_greats_as_arg1 arg1_plays_arg2 arg2_player_is_arg1 arg2_legends_arg1
arg1_announced_his_retirement_from_arg2 arg2_operations_chief_arg1
arg2_player_like_arg1 arg2_and_golfing_personalities_including_arg1 arg2_players_like_arg1
arg2_greats_like_arg1 arg2_players_are_steffi_graf_and_arg1 arg2_great_arg1
arg2_champ_arg1 arg2_greats_such_as_arg1 arg2_professionals_such_as_arg1
arg2_course_designed_by_arg1 arg2_hit_by_arg1 arg2_course_architects_including_arg1
arg2_greats_arg1 arg2_icon_arg1 arg2_stars_like_arg1 arg2_pros_like_arg1
arg1_retires_from_arg2 arg2_phenom_arg1 arg2_lesson_from_arg1
arg2_architects_robert_trent_jones_and_arg1 arg2_sensation_arg1 arg2_architects_like_arg1
arg2_pros_arg1 arg2_stars_venus_and_arg1 arg2_legends_arnold_palmer_and_arg1
arg2_hall_of_famer_arg1 arg2_racket_in_arg1 arg2_superstar_arg1 arg2_legend_arg1
arg2_legends_such_as_arg1 arg2_players_is_arg1 arg2_pro_arg1 arg2_player_was_arg1
arg2_god_arg1 arg2_idol_arg1 arg1_was_born_to_play_arg2 arg2_star_arg1
arg2_hero_arg1 arg2_course_architect_arg1 arg2_players_are_arg1
arg1_retired_from_professional_arg2 arg2_legends_as_arg1 arg2_autographed_by_arg1
arg2_related_quotations_spoken_by_arg1 arg2_courses_were_designed_by_arg1
arg2_player_since_arg1 arg2_match_between_arg1 arg2_course_was_designed_by_arg1
arg1_has_retired_from_arg2 arg2_player_arg1 arg1_can_hit_a_arg2
arg2_legends_including_arg1 arg2_player_than_arg1 arg2_legends_like_arg1
arg2_courses_designed_by_legends_arg1 arg2_player_of_all_time_is_arg1
arg2_fan_knows_arg1 arg1_learned_to_play_arg2 arg1_is_the_best_player_in_arg2
arg2_signed_by_arg1 arg2_champion_arg1

Automatically extracted companies

nissan:
 generalizations = {company}
 literalString = {Nissan, NISSAN, nissan}
 acquired = {toyota}
 acquiredBy = renault
 hasOfficeInCountry = {japan, usa, mexico}
 competesWith = {honda}

ebay:
 generalizations = {company}
 literalString = {eBay, EBay, Ebay, ebay, EBAY, eBAY}
 acquired = {skype, stumbleupon}
 competesWith = {amazon, yahoo, google, microsoft}
 hasOfficeInCountry = {usa, united_kingdom}

ibm:
 generalizations = {company}
 candidateValues = {conference, company, product}
 headquarteredIn = armonk
 candidateValues = {armonk}
 producesProduct = {pc}
 candidateValues = {domino, thinkpad_line, ibm_e_business_logo, first_pcs, powerpc,
 internet, ibm_pc, iseries, rational, first_pc, quickplace, first_ibm_pc, vga_controller,
 original_pc, at_computer, wsfl_specification, selectric, pc, pc_convertible,
 workplace_client_technology, workplace, ids, opteron_server, linux_strategy,
 very_interesting_study, video_graphics_array, business_partner_emblem, ibm, …}
 acquired = {iss, cognos, informix}
 candidateValues = {spi, watchfire, telelogic, daksh, lotus, iss,
 internet_security_systems, gluecode, cognos, sequent, tivoli, diligent, informix,
 webify_solutions, geronimo, rational, information_laboratory, meiosys, webify, …}
 acquiredBy = lenovo_group
 candidateValues = {lenovo_group, lenovo, china, arsenal}
 competesWith = {sun, texas_instruments, samsung, hewlett_packard, apple, novell,
 oracle, microsoft, ricoh, hp, amazon}
 companyEconomicSector = {software}
 hasOfficeInCountry = {united_states, canada, usa, germany, england, uk, france}
 candidateValues = {san_jose, dallas, cambridge, europe, boca_raton, boulder,
 united_states, tucson, november, new_york, poughkeepsie, canada, october, united,
 research_triangle_park, rochester, beaverton, armonk, usa, u_s, germany,
 new_delhi, boeblingen, england, uk, france, us, facebook, masters_degree}

If the key to accurate self-supervised learning is
coupling the training of many functions,

then how can we create even more coupling?

1. introduce additional coupling by adding a learner
based on HTML features instead of free text

NP1 NP2

Krzyzewski coaches the Blue Devils.

athlete
team

coachesTeam(c,t)

person

coach

sport

playsForTeam(a,t)

teamPlaysSport(t,
s)

playsSport(a,s)

SEAL
Set Expander for Any Language

… 

… 

… 

… 

… 

ford, toyota, nissan 

honda 

Seeds  Extrac3on 

*Richard C. Wang and William W. Cohen: Language‐Independent Set Expansion of Named En33es using the 
Web. In Proceedings of IEEE Interna1onal Conference on Data Mining (ICDM 2007), Omaha, NE, USA. 2007. 

SEAL
For each class being learned,

 On each iteration
 Retrain CBL from current KB, allow it to add to KB
 Retrain SEAL from current KB, allow it to add to KB

Typical learned SEAL extractors:

Coupled learning of text and HTML patterns

Ontology
and

populated
KB

the Web

CBL

text
extraction
patterns

SEAL

HTML
extraction
patterns

evidence integration

Number of new instances per category

If the key to accurate self-supervised learning is coupling
the training of many functions,

then how can we create even more coupling?

2. allow learner to discover new coupling constraints
 (by mining its extracted beliefs)

NP1 NP2

Krzyzewski coaches the Blue Devils.

athlete
team

coachesTeam(c,t)

person

coach

sport

playsForTeam(a,t)

teamPlaysSport(t,
s)

playsSport(a,s)

Learning rules by mining the extracted KB

For each relation (e.g., teamPlaysSport(<team>)=<sport>),
seek rules to infer its values

•  Positive examples: extracted beliefs in the KB examples
•  Negative examples: ???

•  Ontology to the rescue:
numberOfValues(teamPlaysSport) = 1
numberOfValues(competesWith) = any

can infer
negative
examples from
positive for
this, but not for
this

Some learned rules (out of 49)
{athletePlaysInLeague ?x ?y} {athletePlaysForTeam ?x ?z} {teamPlaysInLeague ?z ?y} 0.83 25 2 132

{athletePlaysSport ?x basketball} {athletePlaysInLeague ?x nba} 0.96 59 0 18

{cityLocatedInState ?x ?y} {cityCapitalOfState ?x ?y} 0.86 40 4 31

{stadiumLocatedInCity ?x ?y} {stadiumHomeTeam ?x ?z} {teamPlaysInCity ?z ?y} 0.60 27 16 8

{stateLocatedInCountry ?x ?y} {stateHasCapital ?x ?z} {cityLocatedInCountry ?z ?y} 0.77 17 3 7

{teamPlaysInLeague ?x nfl} {teamWonTrophy ?x super_bowl} {teamPlaysSport ?x football} 0.92 23 0 2

{teamPlaysSport ?x hockey} {generalizations ?x sportsteam} {teamWonTrophy ?x stanley_cup} 0.89 16 0 11

{teamPlaysSport ?x baseball} {teamPlaysAgainstTeam ?x yankees} 0.87824 13 0 3

{teamPlaysSport ?x ?y} {teamPlaysAgainstTeam ?x ?z} {teamPlaysSport ?z ?y} 0.8717 138 18 54

{teamPlaysSport ?x basketball} {teamWonTrophy ?x nba_championship} 0.86088 11 0 1

Some embarrassing learned rules

{teamPlaysInLeague ?x nba} {teamPlaysSport ?x basketball} 0.94 35 0 35

{cityCapitalOfState ?x ?y} {cityLocatedInState ?x ?y} {teamPlaysInLeague ?y nba} 0.80 16 2 23

{stateLocatedInCountry ?x united_states} {generalizations ?x stateOrProvince} 0.62 21 11 1

Overall impact:
•  49 learned rules
•  15 rules filtered out manually
•  remaining rules inferred >1000 new triples that had not been read

Learned Probabilistic Horn Clause Rules

0.81 teamPlaysSport(?x,?y) playsForTeam(?x,?z), playSport(?z,?y)

Ontology
and

populated
KB

the Web

CBL

text
extraction
patterns

SEAL

HTML
extraction
patterns

evidence integration,
self reflection

RL

learned
inference

rules

Morph

Morphology
based

extractor

Ontology
and

populated
KB

the Web

CBL

text
extraction
patterns

SEAL

HTML
extraction
patterns

evidence integration,
self reflection

RL

learned
inference

rules

Morph

Morphology
based

extractor

DBpedia,
Freebase,

…

Summary
•  Macro-reading the web can help populate

semantic web
–  especially for frequently-mentioned knowledge

•  Key design choices:
–  Macro, not micro-reading
–  Coupling the learning of many, many extractors
–  Use target ontology to focus reading, constrain learning

•  Next:
–  couple to DBpedia, Freebase, …
–  token/entity distinction
–  self-reflection and never-ending learning

thank you!

