Coupled Semi-Supervised Learning for Information Extraction

Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr. and Tom M. Mitchell

Machine Learning Department
Carnegie Mellon University
February 4, 2010
Read the Web

- Project Goal:
 - System that runs 24x7 and continually
 - Extracts knowledge from web text
 - Improves its ability to do so
 - … with limited human effort
 - Learn more at http://rtw.ml.cmu.edu
 - (or search for “read the web cmu”)
Problem Statement

• Given initial ontology containing:
 • Dozens of categories and relations
 • (e.g., Company and CompanyHeadquarteredInCity)
 • Relationships between categories and relations
 • 15 seed examples of each

• Task:
 • Learn to extract new instances of categories and relations with high precision
 • Run over 200 million web pages, for a few days
General Approach

- Exploit relationships among categories and relations through *coupled semi-supervised learning*
 - Coupled Textual Pattern Learning
 - e.g., “President of X”
 - Coupled Wrapper Induction
 - Learn to extract from lists and tables
 - Coupling multiple extraction methods
 - Couples the above two methods by combining predictions
Why Is This Worthwhile?

- Semi-supervised methods for information extraction are promising, but suffer from divergence (Riloff and Jones 99, Curran 07)
 - Potential for advances in semi-supervised machine learning
- Extracted knowledge useful for many applications:
 - Computational Advertising
 - Search
 - Question Answering
 - Soumen’s vision from this morning’s keynote
Bootstrapped Pattern Learning: Countries (Brin 98, Riloff and Jones 99)

- Canada
- Egypt
- France
- Germany
- Iraq

- Pakistan
- Sri Lanka
- Argentina
- Greece
- Russia

... countries except X
- X is the only country
- home country of X

- GDP of X
- elected president of X
- X has a multi-party system
Semantic Drift (Curran 07)

Canada
Egypt
France
Germany
Iraq
....

war with X
ambassador to X
war in X
occupation of X
invasion of X

planet Earth
Freetown
North Africa

Friday, February 5, 2010
Coupled Learning of Many Functions
Avoiding Semantic Drift: Mutual Exclusion

Positives:
Canada
Egypt
France
Germany
Iraq
...

- war with X
- ambassador to X
- war in X
- occupation of X
- invasion of X
- planet Earth
- Freetown
- North Africa

Negatives:
Asia
Europe
London
Florida
Baghdad
...

- nations like X
- countries other than X
- country like X
- nations such as X
- countries, like X
- Pakistan
- Sri Lanka
- Argentina
- Greece
- Russia

Friday, February 5, 2010
Avoiding Semantic Drift: Type Checking

Type Checking Arguments:
- companies such as Pillar ...
- cities like San Jose ...

X, which is based in Y

Pillar, San Jose OK

inclined pillar, foundation plate Not OK

Friday, February 5, 2010
SEAL: Set Expander for Any Language (Wang and Cohen, 2007)

Seeds

- Ford
- Toyota
- Nissan

Extraction

- Ford
- Honda
- Toyota
- Nissan
Bootstrapping Wrapper Induction

Canada
Egypt
France
Germany
Iraq

Pakistan
Sri Lanka
Argentina
Greece
Russia

SEAL Wrappers:
(URL, Extraction Template)
(URL, Extraction Template)
(URL, Extraction Template)

More SEAL Wrappers:
(URL, Extraction Template)
(URL, Extraction Template)
(URL, Extraction Template)
Can SEAL benefit from Coupling?

Query: Economics History Biology

Wrapper: ">[X]<\option>"
Coupling Multiple Extraction Techniques

- **Intuition**
 - Different extractors make independent errors

- **Strategy (Meta-Bootstrap Learner)**
 - Only promote instances recommended by multiple techniques
Experimental Evaluation

- 76 predicates
 - 32 relations, 44 categories
- Run different algorithms for 10 iterations:
 - MBL: Meta-Bootstrap Learner (CPL + CSEAL)
 - CSEAL: Coupled SEAL
 - CPL: Coupled Pattern Learner
 - SEAL: Uncoupled SEAL
 - UPL: Uncoupled Pattern Learner
- Evaluate correctness of instances with Mechanical Turk
Precision of Promoted Instances

Average Estimated Precision

<table>
<thead>
<tr>
<th>Category</th>
<th>Relations</th>
<th>Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBL</td>
<td>90</td>
<td>95</td>
</tr>
<tr>
<td>CSEAL</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td>CPL</td>
<td>78</td>
<td>89</td>
</tr>
<tr>
<td>SEAL</td>
<td>91</td>
<td>89</td>
</tr>
<tr>
<td>UPL</td>
<td>69</td>
<td>59</td>
</tr>
</tbody>
</table>
Example Promoted Instances

<table>
<thead>
<tr>
<th>Instance</th>
<th>Predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>solomon islands</td>
<td>country</td>
</tr>
<tr>
<td>stuffit</td>
<td>product</td>
</tr>
<tr>
<td>marine industry</td>
<td>economicSector</td>
</tr>
<tr>
<td>soccer, player</td>
<td>sportUsesEquipment</td>
</tr>
<tr>
<td>unocal, oil</td>
<td>companyEconomicSector</td>
</tr>
<tr>
<td>final cut pro, software</td>
<td>productInstanceOf</td>
</tr>
</tbody>
</table>

Friday, February 5, 2010
Example Patterns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Predicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>blockbuster trade for X</td>
<td>athlete</td>
</tr>
<tr>
<td>airlines, including X</td>
<td>company</td>
</tr>
<tr>
<td>personal feelings of X</td>
<td>emotion</td>
</tr>
<tr>
<td>X announced plans to buy Y</td>
<td>companyAcquiredCompany</td>
</tr>
<tr>
<td>X learned to play Y</td>
<td>athletePlaysSport</td>
</tr>
<tr>
<td>X dominance in Y</td>
<td>teamPlaysInLeague</td>
</tr>
</tbody>
</table>
Error Analysis

- Worst performers:
 - Sports Equipment
 - Product Type
 - Traits
 - Vehicles
- The good news: More coupling should help!
Conclusions

- Coupling Semi-Supervised Learning of Categories and Relations:
 - Improves free text pattern learning (CPL)
 - Improves semi-structured IE (CSEAL)
 - Improves separate techniques that make independent errors (MBL)
What’s Next?

• More components:
 • Morphology Classifier
 • Rule Learner

• More predicates: 100+ categories, 50+ relations

• More iterations: (more efficient code)

• More data: ClueWeb09 (2.5B unique sentences)

• Results from a recent run:
 • 88k facts, 90% precision (vs. 9.5k, 90%)
Acknowledgments

Jamie Callan et al.: Web corpora
CNPq and CAPES: Funding
DARPA: Funding
Google: Funding
Yahoo!: PhD Student Fellowship, M45 Cluster
Thank you

Online Materials:

http://rtw.ml.cmu.edu/wsdm10_online

(includes seed ontology, promoted items, learned patterns, Mechanical Turk templates)

Questions?