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Read the Web

• Project Goal: 
• System that runs 24x7 and continually

• Extracts knowledge from web text

• Improves its ability to do so

• … with limited human effort

• Learn more at http://rtw.ml.cmu.edu 

• (or search for “read the web cmu”)
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Problem Statement

• Given initial ontology containing:
• Dozens of categories and relations 

• (e.g., Company and CompanyHeadquarteredInCity)

• Relationships between categories and relations
• 15 seed examples of each

• Task:
• Learn to extract new instances of categories and relations 

with high precision

• Run over 200 million web pages, for a few days
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General Approach

• Exploit relationships among categories and 
relations through coupled semi-supervised learning 

• Coupled Textual Pattern Learning
• e.g., “President of X”

• Coupled Wrapper Induction
• Learn to extract from lists and tables

• Coupling multiple extraction methods
• Couples the above two methods by combining predictions
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Why Is This Worthwhile?
• Semi-supervised methods for information 

extraction are promising, but suffer from 
divergence (Riloff and Jones 99, Curran 07)
• Potential for advances in semi-supervised machine 

learning 

• Extracted knowledge useful for many applications:
• Computational Advertising
• Search

• Question Answering
• Soumen’s vision from this morning’s keynote
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Bootstrapped Pattern Learning: Countries 
(Brin 98, Riloff and Jones 99)

Canada
Egypt
France
Germany
Iraq

GDP of X
elected president of X
X has a multi-party system

Pakistan
Sri Lanka
Argentina
Greece
Russia …

countries except X
X is the only country
home country of X
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Semantic Drift (Curran 07)

Canada
Egypt
France
Germany
Iraq
....

war with X
ambassador to X
war in X
occupation of X
invasion of X

planet Earth
Freetown
North Africa
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Coupled Learning of Many Functions

Country Company

Sports Team

City

Athlete

HeadquarteredInLocatedIn

PlaysFor
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Coupling Different Extraction Techniques

Country Company

Sports 

City

Athlete

HeadquarteredInLocatedIn

PlaysFor

Pattern Learner

Country Company

Sports 

City

Athlete

HeadquarteredInLocatedIn

PlaysFor

Wrapper Inducer
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Avoiding Semantic Drift: Mutual Exclusion

Positives:
Canada
Egypt
France
Germany
Iraq
....

nations like X
countries other than X
country like X
nations such as X
countries , like X

Pakistan
Sri Lanka
Argentina
Greece
Russia

Negatives:
Asia
Europe
London
Florida
Baghdad
...

war with X
ambassador to X
war in X
occupation of X
invasion of X

planet Earth
Freetown
North Africa
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Avoiding Semantic Drift: Type Checking

X , which is based in Y

Pillar, San Jose

inclined pillar, foundation plate

OK

Not OK

Type Checking Arguments:
... companies such as Pillar ...
... cities like San Jose ...
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SEAL: Set Expander for Any Language 
(Wang and Cohen, 2007)

ford, toyota, nissan

honda

Seeds Extraction
<li class=”ford”><a href=”http://www.curryauto.com/”>

<li class=”toyota”><a href=”http://www.curryauto.com/”>

<li class=”nissan”><a href=”http://www.curryauto.com/”>

<li class=”honda”><a href=”http://www.curryauto.com/”>
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Bootstrapping Wrapper Induction

SEAL Wrappers:
(URL, Extraction Template)
(URL, Extraction Template)
(URL, Extraction Template)

More SEAL Wrappers:
(URL, Extraction Template)
(URL, Extraction Template)
(URL, Extraction Template)

…

Canada
Egypt
France
Germany
Iraq

Pakistan
Sri Lanka
Argentina
Greece
Russia
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Can SEAL benefit from Coupling?

Wrapper: “>[X]</option>

Query: Economics History Biology
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Coupling Multiple Extraction Techniques

• Intuition

• Different extractors make independent errors

• Strategy (Meta-Bootstrap Learner)

•Only promote instances recommended by multiple 
techniques
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Experimental Evaluation

• 76 predicates

• 32 relations, 44 categories

• Run different algorithms for 10 iterations:

• MBL: Meta-Bootstrap Learner (CPL + CSEAL) 

• CSEAL: Coupled SEAL 

• CPL: Coupled Pattern Learner

• SEAL:  Uncoupled SEAL

• UPL: Uncoupled Pattern Learner

• Evaluate correctness of instances with Mechanical Turk
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Precision of Promoted Instances

MBL

CSEAL

CPL

SEAL

UPL

0 25.0 50.0 75.0 100.0

69

91

89

91

95

41

59

78

78

90

Average Estimated Precision

Categories Relations
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Example Promoted Instances

Instance Predicate

solomon islands country

stuffit product

marine industry economicSector

soccer, player sportUsesEquipment

unocal, oil companyEconomicSector

final cut pro, software productInstanceOf
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Example Patterns

Pattern Predicate

blockbuster trade for X athlete

airlines , including X company

personal feelings of X emotion

X announced plans to buy Y companyAcquiredCompany

X learned to play Y athletePlaysSport

X dominance in Y teamPlaysInLeague
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Error Analysis

•Worst performers: 

• Sports Equipment

• Product Type

• Traits

• Vehicles

• The good news: More coupling should help!

Friday, February 5, 2010



Conclusions

• Coupling Semi-Supervised Learning of Categories 
and Relations:

• Improves free text pattern learning (CPL)

• Improves semi-structured IE (CSEAL)

• Improves separate techniques that make independent 
errors (MBL)

Friday, February 5, 2010



What’s Next?

• More components: 
• Morphology Classifier

• Rule Learner

• More predicates: 100+ categories, 50+ relations

• More iterations: (more efficient code)

• More data: ClueWeb09 (2.5B unique sentences)

• Results from a recent run: 
• 88k facts, 90% precision (vs. 9.5k, 90%)
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Thank you

Online Materials: 
http://rtw.ml.cmu.edu/wsdm10_online

(includes seed ontology, promoted items, 
learned patterns, Mechanical Turk templates)

Questions?
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